BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19594139)

  • 1. Oxidative C-C bond formation (Scholl reaction) with DDQ as an efficient and easily recyclable oxidant.
    Zhai L; Shukla R; Rathore R
    Org Lett; 2009 Aug; 11(15):3474-7. PubMed ID: 19594139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the arenium-ion (protontransfer) versus the cation-radical (electron transfer) mechanism of Scholl reaction using DDQ as oxidant.
    Zhai L; Shukla R; Wadumethrige SH; Rathore R
    J Org Chem; 2010 Jul; 75(14):4748-60. PubMed ID: 20575516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential oxidative transformation of tetraarylethylenes to 9,10-diarylphenanthrenes and dibenzo[g,p]chrysenes using DDQ as an oxidant.
    Navale TS; Thakur K; Rathore R
    Org Lett; 2011 Apr; 13(7):1634-7. PubMed ID: 21361296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative transformation to naphthodithiophene and thia[7]helicenes by intramolecular Scholl reaction of substituted 1,2-bis(2-thienyl)benzene precursors.
    Waghray D; de Vet C; Karypidou K; Dehaen W
    J Org Chem; 2013 Nov; 78(22):11147-54. PubMed ID: 24147631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DDQ as a versatile and easily recyclable oxidant: a systematic review.
    Alsharif MA; Raja QA; Majeed NA; Jassas RS; Alsimaree AA; Sadiq A; Naeem N; Mughal EU; Alsantali RI; Moussa Z; Ahmed SA
    RSC Adv; 2021 Sep; 11(47):29826-29858. PubMed ID: 35479576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations.
    Li CJ
    Acc Chem Res; 2009 Feb; 42(2):335-44. PubMed ID: 19220064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propargylation of 1,3-dicarbonyl compounds with 1,3-diarylpropynes via oxidative cross-coupling between sp3 C-H and sp3 C-H.
    Cheng D; Bao W
    J Org Chem; 2008 Sep; 73(17):6881-3. PubMed ID: 18656984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Precise Synthesis of Phenylene-Extended Cyclic Hexa-peri-hexabenzocoronenes from Polyarylated [n]Cycloparaphenylenes by the Scholl Reaction.
    Quernheim M; Golling FE; Zhang W; Wagner M; Räder HJ; Nishiuchi T; Müllen K
    Angew Chem Int Ed Engl; 2015 Aug; 54(35):10341-6. PubMed ID: 26110414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexa-peri-hexabenzocoronenes by efficient oxidative cyclodehydrogenation: the role of the oligophenylene precursors.
    Feng X; Wu J; Enkelmann V; Müllen K
    Org Lett; 2006 Mar; 8(6):1145-8. PubMed ID: 16524289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical one-pot synthesis of soluble hexa-peri-hexabenzocoronene and isolation of its cation-radical salt.
    Rathore R; Burns CL
    J Org Chem; 2003 May; 68(10):4071-4. PubMed ID: 12737593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the Scholl reaction.
    King BT; Kroulík J; Robertson CR; Rempala P; Hilton CL; Korinek JD; Gortari LM
    J Org Chem; 2007 Mar; 72(7):2279-88. PubMed ID: 17326684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized Contorted Polycyclic Aromatic Hydrocarbons by a One-Step Cyclopentannulation and Regioselective Triflyloxylation.
    Yang X; Hoffmann M; Rominger F; Kirschbaum T; Dreuw A; Mastalerz M
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10650-10654. PubMed ID: 31125478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of electron-poor hexa-peri-hexabenzocoronenes.
    Jones DJ; Purushothaman B; Ji S; Holmes AB; Wong WW
    Chem Commun (Camb); 2012 Aug; 48(65):8066-8. PubMed ID: 22767202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review.
    Jassas RS; Mughal EU; Sadiq A; Alsantali RI; Al-Rooqi MM; Naeem N; Moussa Z; Ahmed SA
    RSC Adv; 2021 Sep; 11(51):32158-32202. PubMed ID: 35495486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative C-C bond-forming reaction of electron-rich alkylbenzyl ether with trimethylvinyloxysilane.
    Ying BP; Trogden BG; Kohlman DT; Liang SX; Xu YC
    Org Lett; 2004 May; 6(10):1523-6. PubMed ID: 15128226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable synthesis of quaterrylene: solution-phase 1H NMR spectroscopy of its oxidative dication.
    Thamatam R; Skraba SL; Johnson RP
    Chem Commun (Camb); 2013 Oct; 49(80):9122-4. PubMed ID: 23999880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of oxidative aromatic coupling and the Scholl reaction.
    Grzybowski M; Skonieczny K; Butenschön H; Gryko DT
    Angew Chem Int Ed Engl; 2013 Sep; 52(38):9900-30. PubMed ID: 23852649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium-catalyzed C-H bond functionalization with arylsulfonyl chlorides.
    Zhao X; Dimitrijević E; Dong VM
    J Am Chem Soc; 2009 Mar; 131(10):3466-7. PubMed ID: 19243177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A slippery slope: mechanistic analysis of the intramolecular Scholl reaction of hexaphenylbenzene.
    Rempala P; Kroulík J; King BT
    J Am Chem Soc; 2004 Nov; 126(46):15002-3. PubMed ID: 15547977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scholl Reaction of Perylene-Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon?
    Zou Y; Han Y; Wu S; Hou X; Chow CHE; Wu J
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17654-17663. PubMed ID: 34002913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.