These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19594177)

  • 21. Monodisperse double emulsions generated from a microcapillary device.
    Utada AS; Lorenceau E; Link DR; Kaplan PD; Stone HA; Weitz DA
    Science; 2005 Apr; 308(5721):537-41. PubMed ID: 15845850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional Microcapsules with Hybrid Shells Made via Sol-Gel Reaction within Double Emulsions.
    Moore DG; Brignoli JVA; Rühs PA; Studart AR
    Langmuir; 2017 Sep; 33(36):9007-9017. PubMed ID: 28813598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets.
    Miller E; Rotea M; Rothstein JP
    Lab Chip; 2010 May; 10(10):1293-301. PubMed ID: 20445883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis.
    Priest C; Quinn A; Postma A; Zelikin AN; Ralston J; Caruso F
    Lab Chip; 2008 Dec; 8(12):2182-7. PubMed ID: 19023485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong Microcapsules with Permeable Porous Shells Made through Phase Separation in Double Emulsions.
    Loiseau E; Niedermair F; Albrecht G; Frey M; Hauser A; Rühs PA; Studart AR
    Langmuir; 2017 Mar; 33(9):2402-2410. PubMed ID: 28195737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells.
    Lee SS; Abbaspourrad A; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1294-300. PubMed ID: 24381982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microcapsules with protein fibril reinforced shells: effect of fibril properties on mechanical strength of the shell.
    Humblet-Hua NP; van der Linden E; Sagis LM
    J Agric Food Chem; 2012 Sep; 60(37):9502-11. PubMed ID: 22906204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors.
    Nie Z; Xu S; Seo M; Lewis PC; Kumacheva E
    J Am Chem Soc; 2005 Jun; 127(22):8058-63. PubMed ID: 15926830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells.
    Arriaga LR; Amstad E; Weitz DA
    Lab Chip; 2015 Aug; 15(16):3335-40. PubMed ID: 26152396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling the interactions between compliant microcapsules and pillars in microchannels.
    Zhu G; Alexeev A; Kumacheva E; Balazs AC
    J Chem Phys; 2007 Jul; 127(3):034703. PubMed ID: 17655451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials.
    Ribeiro de Souza L; Al-Tabbaa A
    Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device.
    Xu S; Nisisako T
    Sci Rep; 2020 Mar; 10(1):4549. PubMed ID: 32165712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterned surfaces segregate compliant microcapsules.
    Alexeev A; Verberg R; Balazs AC
    Langmuir; 2007 Jan; 23(3):983-7. PubMed ID: 17241000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-Step Bulk Fabrication of Polymer-Based Microcapsules with Hard-Soft Bilayer Thick Shells.
    Jeoffroy E; Demirörs AF; Schwendimann P; Dos Santos S; Danzi S; Hauser A; Partl MN; Studart AR
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37364-37373. PubMed ID: 28967256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation and mechanical characterization of aminoplast core/shell microcapsules.
    Pretzl M; Neubauer M; Tekaat M; Kunert C; Kuttner C; Leon G; Berthier D; Erni P; Ouali L; Fery A
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2940-8. PubMed ID: 22583902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic Formation of Hydrogel Microcapsules with a Single Aqueous Core by Spontaneous Cross-Linking in Aqueous Two-Phase System Droplets.
    Watanabe T; Motohiro I; Ono T
    Langmuir; 2019 Feb; 35(6):2358-2367. PubMed ID: 30626189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fork in the road: patterned surfaces direct microcapsules to make a decision.
    Usta OB; Alexeev A; Balazs AC
    Langmuir; 2007 Oct; 23(22):10887-90. PubMed ID: 17880118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic production of multiple emulsions and functional microcapsules.
    Lee TY; Choi TM; Shim TS; Frijns RA; Kim SH
    Lab Chip; 2016 Sep; 16(18):3415-40. PubMed ID: 27470590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of uniform polymer eccentric and core-centered hollow microcapsules for ultrasound-regulated drug release.
    Huang J; Li W; Li Y; Luo C; Zeng Y; Xu Y; Zhou J
    J Mater Chem B; 2014 Oct; 2(39):6848-6854. PubMed ID: 32261881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasound-triggered release from metal shell microcapsules.
    White AL; Langton C; Wille ML; Hitchcock J; Cayre OJ; Biggs S; Blakey I; Whittaker AK; Rose S; Puttick S
    J Colloid Interface Sci; 2019 Oct; 554():444-452. PubMed ID: 31325678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.