These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19594189)

  • 1. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.
    Scheckman JH; McMurry PH; Pratsinis SE
    Langmuir; 2009 Jul; 25(14):8248-54. PubMed ID: 19594189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates.
    Wengeler R; Teleki A; Vetter M; Pratsinis SE; Nirschl H
    Langmuir; 2006 May; 22(11):4928-35. PubMed ID: 16700577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.
    Kelesidis GA; Furrer FM; Wegner K; Pratsinis SE
    Langmuir; 2018 Jul; 34(29):8532-8541. PubMed ID: 29940739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.
    Eggersdorfer ML; Gröhn AJ; Sorensen CM; McMurry PH; Pratsinis SE
    J Colloid Interface Sci; 2012 Dec; 387(1):12-23. PubMed ID: 22959835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.
    di Stasio S; Konstandopoulos AG; Kostoglou M
    J Colloid Interface Sci; 2002 Mar; 247(1):33-46. PubMed ID: 16290438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing dispersion and fragmentation of fractal, pyrogenic silica nanoagglomerates by small-angle X-ray scattering.
    Wengeler R; Wolf F; Dingenouts N; Nirschl H
    Langmuir; 2007 Apr; 23(8):4148-54. PubMed ID: 17371058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The self-preserving size distribution theory. I. Effects of the Knudsen number on aerosol agglomerate growth.
    Dekkers PJ; Friedlander SK
    J Colloid Interface Sci; 2002 Apr; 248(2):295-305. PubMed ID: 16290534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density and Fractal-like Dimension of Particles from a Laminar Diffusion Flame.
    Skillas G; Burtscher H; Siegmann K; Baltensperger U
    J Colloid Interface Sci; 1999 Sep; 217(2):269-274. PubMed ID: 10469535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time shape-based particle separation and detailed in situ particle shape characterization.
    Beranek J; Imre D; Zelenyuk A
    Anal Chem; 2012 Feb; 84(3):1459-65. PubMed ID: 22220641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis.
    Ku BK; Emery MS; Maynard AD; Stolzenburg MR; McMurry PH
    Nanotechnology; 2006 Jul; 17(14):3613-21. PubMed ID: 19661613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to determine the fractal dimension of diesel soot agglomerates.
    Lapuerta M; Ballesteros R; Martos FJ
    J Colloid Interface Sci; 2006 Nov; 303(1):149-58. PubMed ID: 16934823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High concentration agglomerate dynamics at high temperatures.
    Heine MC; Pratsinis SE
    Langmuir; 2006 Nov; 22(24):10238-45. PubMed ID: 17107027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.
    Ku BK; Kulkarni P
    J Aerosol Sci; 2012 May; 47():100-110. PubMed ID: 26692585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility and settling rate of agglomerates of polydisperse nanoparticles.
    Spyrogianni A; Karadima KS; Goudeli E; Mavrantzas VG; Pratsinis SE
    J Chem Phys; 2018 Feb; 148(6):064703. PubMed ID: 29448768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision Kinetics and Electrostatic Dispersion of Airborne Submicrometer Fractal Agglomerates.
    Katzer M; Weber AP; Kasper G
    J Colloid Interface Sci; 2001 Aug; 240(1):67-77. PubMed ID: 11446787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.
    Khalizov AF; Xue H; Wang L; Zheng J; Zhang R
    J Phys Chem A; 2009 Feb; 113(6):1066-74. PubMed ID: 19146408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry.
    Park K; Lee D; Rai A; Mukherjee D; Zachariah MR
    J Phys Chem B; 2005 Apr; 109(15):7290-9. PubMed ID: 16851834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates.
    Wengeler R; Nirschl H
    J Colloid Interface Sci; 2007 Feb; 306(2):262-73. PubMed ID: 17109876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of aggregate strength, structure, and light scattering properties on primary particle size under turbulent conditions in stirred tank.
    Ehrl L; Soos M; Morbidelli M
    Langmuir; 2008 Apr; 24(7):3070-81. PubMed ID: 18302430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.