These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19594312)

  • 1. Analysis of nonlinear relationships in dual epidemics, and its application to the management of grapevine downy and powdery mildews.
    Savary S; Delbac L; Rochas A; Taisant G; Willocquet L
    Phytopathology; 2009 Aug; 99(8):930-42. PubMed ID: 19594312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field evaluation of an expertise-based formal decision system for fungicide management of grapevine downy and powdery mildews.
    Delière L; Cartolaro P; Léger B; Naud O
    Pest Manag Sci; 2015 Sep; 71(9):1247-57. PubMed ID: 25264219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation.
    Peressotti E; Duchêne E; Merdinoglu D; Mestre P
    J Microbiol Methods; 2011 Feb; 84(2):265-71. PubMed ID: 21167874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highlighting features of spatiotemporal spread of powdery mildew epidemics in the vineyard using statistical modeling on field experimental data.
    Calonnec A; Cartolaro P; Chadoeuf J
    Phytopathology; 2009 Apr; 99(4):411-22. PubMed ID: 19271983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.).
    Marsh E; Alvarez S; Hicks LM; Barbazuk WB; Qiu W; Kovacs L; Schachtman D
    Proteomics; 2010 May; 10(10):2057-64. PubMed ID: 20232356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets.
    Wolf PF; Verreet A
    Commun Agric Appl Biol Sci; 2008; 73(2):57-68. PubMed ID: 19226742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grapevine downy mildew control in organic farming.
    La Torre A; Spera G; Lolletti D
    Commun Agric Appl Biol Sci; 2005; 70(3):371-9. PubMed ID: 16637202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of climate change on infection of grapevine by downy and powdery mildew under controlled environment.
    Pugliese M; Gullino ML; Garibaldi A
    Commun Agric Appl Biol Sci; 2011; 76(4):579-82. PubMed ID: 22702176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level.
    Díez-Navajas AM; Wiedemann-Merdinoglu S; Greif C; Merdinoglu D
    Phytopathology; 2008 Jul; 98(7):776-80. PubMed ID: 18943253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural analysis of Vitis vinifera leaf tissues showing atypical symptoms of Plasmopara viticola.
    Musetti R; Stringher L; Borselli S; Vecchione A; Zulini L; Pertot I
    Micron; 2005; 36(1):73-80. PubMed ID: 15582481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sunlight exposure on grapevine powdery mildew development.
    Austin CN; Wilcox WF
    Phytopathology; 2012 Sep; 102(9):857-66. PubMed ID: 22881871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine.
    Yao YA; Wang J; Ma X; Lutts S; Sun C; Ma J; Yang Y; Achal V; Xu G
    J Exp Bot; 2012 Sep; 63(14):5155-70. PubMed ID: 22936830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grapevine Downy Mildew Plasmopara viticola Infection Elicits the Expression of Allergenic Pathogenesis-Related Proteins.
    Rossin G; Villalta D; Martelli P; Cecconi D; Polverari A; Zoccatelli G
    Int Arch Allergy Immunol; 2015; 168(2):90-5. PubMed ID: 26613254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethephon elicits protection against Erysiphe necator in grapevine.
    Belhadj A; Telef N; Cluzet S; Bouscaut J; Corio-Costet MF; Mérillon JM
    J Agric Food Chem; 2008 Jul; 56(14):5781-7. PubMed ID: 18570435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acute low-temperature events on development of Erysiphe necator and susceptibility of Vitis vinifera.
    Moyer MM; Gadoury DM; Cadle-Davidson L; Dry IB; Magarey PA; Wilcox WF; Seem RC
    Phytopathology; 2010 Nov; 100(11):1240-9. PubMed ID: 20649419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterothallism in Peronospora farinosa f.sp. chenopodii, the causal agent of downy mildew of quinoa (Chenopodium quinoa).
    Danielsen S
    J Basic Microbiol; 2001; 41(5):305-8. PubMed ID: 11688216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A characterization of grapevine trunk diseases in France from data generated by the National Grapevine Wood Diseases Survey.
    Fussler L; Kobes N; Bertrand F; Maumy M; Grosman J; Savary S
    Phytopathology; 2008 May; 98(5):571-9. PubMed ID: 18943225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of black rot epidemics in vineyards using a weather-driven disease model.
    Onesti G; González-Domínguez E; Rossi V
    Pest Manag Sci; 2016 Dec; 72(12):2321-2329. PubMed ID: 26996951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease-weather relationships for powdery mildew and yellow rust on winter wheat.
    Te Beest DE; Paveley ND; Shaw MW; van den Bosch F
    Phytopathology; 2008 May; 98(5):609-17. PubMed ID: 18943230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling spatial frailties in survival analysis of cucurbit downy mildew epidemics.
    Ojiambo PS; Kang EL
    Phytopathology; 2013 Mar; 103(3):216-27. PubMed ID: 23190114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.