BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19594385)

  • 1. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array.
    Yu Z; Graudejus O; Tsay C; Lacour SP; Wagner S; Morrison B
    J Neurotrauma; 2009 Jul; 26(7):1135-45. PubMed ID: 19594385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural sensing of electrical activity with stretchable microelectrode arrays.
    Yu Z; Graudejus O; Lacour SP; Wagner S; Morrison B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4210-3. PubMed ID: 19964344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable microelectrode arrays--a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics.
    Yu Z; Tsay C; Lacour SP; Wagner S; Morrison B
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6732-5. PubMed ID: 17959498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity.
    Graudejus O; Morrison B; Goletiani C; Yu Z; Wagner S
    Adv Funct Mater; 2012 Feb; 22(3):640-651. PubMed ID: 24093006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in Hippocampal Network Activity after In Vitro Traumatic Brain Injury.
    Kang WH; Cao W; Graudejus O; Patel TP; Wagner S; Meaney DF; Morrison B
    J Neurotrauma; 2015 Jul; 32(13):1011-9. PubMed ID: 25517970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1033-44. PubMed ID: 25628144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures.
    Thiébaud P; de Rooij NF; Koudelka-Hep M; Stoppini L
    IEEE Trans Biomed Eng; 1997 Nov; 44(11):1159-63. PubMed ID: 9353996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures.
    Stoppini L; Duport S; Corrèges P
    J Neurosci Methods; 1997 Mar; 72(1):23-33. PubMed ID: 9128164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation.
    Kim JH; Kang G; Nam Y; Choi YK
    Nanotechnology; 2010 Feb; 21(8):85303. PubMed ID: 20101076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array.
    Novak JL; Wheeler BC
    J Neurosci Methods; 1988 Mar; 23(2):149-59. PubMed ID: 3357355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures.
    Morrison B; Cater HL; Benham CD; Sundstrom LE
    J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces.
    Lacour SP; Benmerah S; Tarte E; FitzGerald J; Serra J; McMahon S; Fawcett J; Graudejus O; Yu Z; Morrison B
    Med Biol Eng Comput; 2010 Oct; 48(10):945-54. PubMed ID: 20535574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus.
    Yu Z; Morrison B
    J Neurophysiol; 2010 Jan; 103(1):499-510. PubMed ID: 19923245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transistor array with an organotypic brain slice: field potential records and synaptic currents.
    Besl B; Fromherz P
    Eur J Neurosci; 2002 Mar; 15(6):999-1005. PubMed ID: 11918660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and application of a novel brain slice system that permits independent electrophysiological recordings from multiple slices.
    Stopps M; Allen N; Barrett R; Choudhury HI; Jarolimek W; Johnson M; Kuenzi FM; Maubach KA; Nagano N; Seabrook GR
    J Neurosci Methods; 2004 Jan; 132(2):137-48. PubMed ID: 14706711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional tolerance to mechanical deformation developed from organotypic hippocampal slice cultures.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Jun; 14(3):561-75. PubMed ID: 25236799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multielectrode Arrays.
    Burley R; Harvey JRM
    Methods Mol Biol; 2021; 2188():109-132. PubMed ID: 33119849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.