BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19594432)

  • 1. Interaction of the chaperone calreticulin with proteins and peptides of different structural classes.
    Duus K; Sandhu N; Jørgensen CS; Hansen PR; Steinø A; Thaysen-Andersen M; Højrup P; Houen G
    Protein Pept Lett; 2009; 16(11):1414-23. PubMed ID: 19594432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polypeptide binding properties of the chaperone calreticulin.
    Jørgensen CS; Heegaard NH; Holm A; Højrup P; Houen G
    Eur J Biochem; 2000 May; 267(10):2945-54. PubMed ID: 10806393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interactions of calreticulin with immunoglobulin G and immunoglobulin Y.
    Møllegaard KM; Duus K; Træholt SD; Thaysen-Andersen M; Liu Y; Palma AS; Feizi T; Hansen PR; Højrup P; Houen G
    Biochim Biophys Acta; 2011 Jul; 1814(7):889-99. PubMed ID: 21447409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical method for determining relative chaperone activity using an ovalbumin-conjugated column.
    Hirano M; Kato Y; Imagawa A; Totani K
    Biochem Biophys Res Commun; 2015 Jan; 456(1):333-8. PubMed ID: 25436432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation-dependent interactions of calreticulin with denatured and native proteins.
    Wiuff C; Houen G
    Acta Chem Scand (Cph); 1996 Sep; 50(9):788-95. PubMed ID: 8817869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between calcium and the in vitro lectin and chaperone activities of calreticulin.
    Conte IL; Keith N; Gutiérrez-Gonzalez C; Parodi AJ; Caramelo JJ
    Biochemistry; 2007 Apr; 46(15):4671-80. PubMed ID: 17385894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ovalbumin, ovotransferrin, lysozyme: three model proteins for structural modifications at the air-water interface.
    Lechevalier V; Croguennec T; Pezennec S; Guérin-Dubiard C; Pasco M; Nau F
    J Agric Food Chem; 2003 Oct; 51(21):6354-61. PubMed ID: 14518967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of C1q with the receptor calreticulin requires a conformational change in C1q.
    Steinø A; Jørgensen CS; Laursen I; Houen G
    Scand J Immunol; 2004 May; 59(5):485-95. PubMed ID: 15140059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide binding specificity of the chaperone calreticulin.
    Sandhu N; Duus K; Jørgensen CS; Hansen PR; Bruun SW; Pedersen LØ; Højrup P; Houen G
    Biochim Biophys Acta; 2007 Jun; 1774(6):701-13. PubMed ID: 17499031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear polymerization caused by the defective folding of a non-inhibitory serpin ovalbumin.
    Shirai N; Tani F; Higasa T; Yasumoto K
    J Biochem; 1997 Apr; 121(4):787-97. PubMed ID: 9163532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregates with lysozyme and ovalbumin show features of amyloid-like fibrils.
    Sugimoto Y; Kamada Y; Tokunaga Y; Shinohara H; Matsumoto M; Kusakabe T; Ohkuri T; Ueda T
    Biochem Cell Biol; 2011 Dec; 89(6):533-44. PubMed ID: 22004604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of calreticulin with amyloid beta peptide 1-42.
    Duus K; Hansen PR; Houen G
    Protein Pept Lett; 2008; 15(1):103-7. PubMed ID: 18221019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational stability of calreticulin.
    Jørgensen CS; Trandum C; Larsen N; Ryder LR; Gajhede M; Skov LK; Højrup P; Barkholt V; Houen G
    Protein Pept Lett; 2005 Oct; 12(7):687-93. PubMed ID: 16522185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature control for kinetic refolding of heat-denatured ovalbumin.
    Tani F; Shirai N; Onishi T; Venelle F; Yasumoto K; Doi E
    Protein Sci; 1997 Jul; 6(7):1491-502. PubMed ID: 9232650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations.
    Richter AG; Kuzmenko I
    Langmuir; 2013 Apr; 29(17):5167-80. PubMed ID: 23586436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopolymer-surfactant interaction: 4. Kinetics of binding of cetyltrimethyl ammonium bromide with gelatin, hemoglobin, beta-lactoglobulin and lysozyme.
    Maulik S; Moulik SP; Chattoraj DK
    J Biomol Struct Dyn; 1996 Apr; 13(5):771-80. PubMed ID: 8723772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and thermal unfolding of calreticulin.
    Duus K; Larsen N; Tran TA; Güven E; Skov LK; Jespersgaard C; Gajhede M; Houen G
    Protein Pept Lett; 2013 May; 20(5):562-8. PubMed ID: 22998950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificities of IgE, IgG and IgA antibodies to ovalbumin. Comparison of binding activities to denatured ovalbumin or ovalbumin fragments of IgE antibodies with those of IgG or IgA antibodies.
    Honma K; Kohno Y; Saito K; Shimojo N; Tsunoo H; Niimi H
    Int Arch Allergy Immunol; 1994; 103(1):28-35. PubMed ID: 7505140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-refolding denatured-reduced hen egg white lysozyme with acidic and basic proteins.
    Trivedi VD; Raman B; Rao CM; Ramakrishna T
    FEBS Lett; 1997 Dec; 418(3):363-6. PubMed ID: 9428746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group 3 LEA Protein Model Peptides Suppress Heat-Induced Lysozyme Aggregation. Elucidation of the Underlying Mechanism Using Coarse-Grained Molecular Simulations.
    Furuki T; Takahashi Y; Hatanaka R; Kikawada T; Furuta T; Sakurai M
    J Phys Chem B; 2020 Apr; 124(14):2747-2759. PubMed ID: 32192343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.