These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1959447)

  • 1. Characterization of the mechanism of action of a catalytic antibody.
    Martin MT; Schantz AR; Schultz PG; Rees AR
    Ciba Found Symp; 1991; 159():188-97; discussion 197-200. PubMed ID: 1959447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies of a tyrosine-dependent catalytic antibody.
    Martin MT; Napper AD; Schultz PG; Rees AR
    Biochemistry; 1991 Oct; 30(40):9757-61. PubMed ID: 1911763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoabzymes: structurally and mechanistically similar catalytic antibodies from the same immunization.
    Angeles TS; Smith RG; Darsley MJ; Sugasawara R; Sanchez RI; Kenten J; Schultz PG; Martin MT
    Biochemistry; 1993 Nov; 32(45):12128-35. PubMed ID: 8218291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic antibody activity elicited by active immunisation. Evidence for natural variation involving preferential stabilization of the transition state.
    Gallacher G; Jackson CS; Searcey M; Goel R; Mellor GW; Smith CZ; Brocklehurst K
    Eur J Biochem; 1993 May; 214(1):197-207. PubMed ID: 8508792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple method for selecting catalytic monoclonal antibodies that exhibit turnover and specificity.
    Tawfik DS; Zemel RR; Arad-Yellin R; Green BS; Eshhar Z
    Biochemistry; 1990 Oct; 29(42):9916-21. PubMed ID: 2271630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective chemical catalysis by an antibody.
    Pollack SJ; Jacobs JW; Schultz PG
    Science; 1986 Dec; 234(4783):1570-3. PubMed ID: 3787262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tritylase antibodies.
    Iverson BL; Iverson SA; Cameron KE; Jahangiri GK; Pasternak DS; Lerner RA
    Ciba Found Symp; 1991; 159():227-33; discussion 234-5. PubMed ID: 1959450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase.
    Adams JA; Taylor SS
    Protein Sci; 1993 Dec; 2(12):2177-86. PubMed ID: 8298463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD; Schultz PG
    J Mol Biol; 1998 Jan; 275(1):95-111. PubMed ID: 9451442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Catalytic antibodies: generation of a new class of protein catalysts exploiting the immune system].
    Fujii I
    Yakugaku Zasshi; 1996 Aug; 116(8):606-21. PubMed ID: 8831262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic polyclonal antibodies.
    Stephens DB; Iverson BL
    Biochem Biophys Res Commun; 1993 May; 192(3):1439-44. PubMed ID: 8507208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common ancestry for multiple catalytic antibodies generated against a single transition-state analog.
    Miyashita H; Hara T; Tanimura R; Tanaka F; Kikuchi M; Fujii I
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):6045-9. PubMed ID: 8016113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H; Hara T; Tanimura R; Fukuyama S; Cagnon C; Kohara A; Fujii I
    J Mol Biol; 1997 Apr; 267(5):1247-57. PubMed ID: 9150409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile.
    Seigner C; Prodanov E; Marchis-Mouren G
    Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.