BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19594695)

  • 1. Evolutionary pathways to self-fertilization in a tristylous plant species.
    Barrett SCH; Ness RW; Vallejo-Marín M
    New Phytol; 2009 Aug; 183(3):546-556. PubMed ID: 19594695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. POLLEN DISCOUNTING AND THE SPREAD OF A SELFING VARIANT IN TRISTYLOUS EICHHORNIA PANICULATA: EVIDENCE FROM EXPERIMENTAL POPULATIONS.
    Kohn JR; Barrett SCH
    Evolution; 1994 Oct; 48(5):1576-1594. PubMed ID: 28568426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of flower architecture during early stages in the evolution of self-fertilization.
    Vallejo-Marín M; Barrett SC
    Ann Bot; 2009 Apr; 103(6):951-62. PubMed ID: 19202135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE DISSOLUTION OF A COMPLEX GENETIC POLYMORPHISM: THE EVOLUTION OF SELF-FERTILIZATION IN TRISTYLOUS EICHHORNIA PANICULATA (PONTEDERIACEAE).
    Barrett SCH; Morgan MT; Husband BC
    Evolution; 1989 Nov; 43(7):1398-1416. PubMed ID: 28564241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic architecture of tristyly and its breakdown to self-fertilization.
    Arunkumar R; Wang W; Wright SI; Barrett SC
    Mol Ecol; 2017 Feb; 26(3):752-765. PubMed ID: 27914204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Floral variation and environmental heterogeneity in a tristylous clonal aquatic of the Pantanal wetlands of Brazil.
    Leme da Cunha N; Fischer E; Lorenz-Lemke AP; Barrett SC
    Ann Bot; 2014 Dec; 114(8):1637-49. PubMed ID: 25180289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of inbreeding depression and mating system in the evolution of heterostyly.
    Weber JJ; Weller SG; Sakai AK; Tsyusko OV; Glenn TC; Domínguez CA; Molina-Freaner FE; Fornoni J; Tran M; Nguyen N; Nguyen K; Tran LK; Joice G; Harding E
    Evolution; 2013 Aug; 67(8):2309-22. PubMed ID: 23888853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EXPERIMENTAL STUDIES ON THE FUNCTIONAL SIGNIFICANCE OF HETEROSTYLY.
    Kohn JR; Barrett SCH
    Evolution; 1992 Feb; 46(1):43-55. PubMed ID: 28564966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mating-system variation, demographic history and patterns of nucleotide diversity in the Tristylous plant Eichhornia paniculata.
    Ness RW; Wright SI; Barrett SC
    Genetics; 2010 Feb; 184(2):381-92. PubMed ID: 19917767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VARIATION IN THE MATING SYSTEM OF EICHHORNIA PANICULATA (SPRENG.) SOLMS. (PONTEDERIACEAE).
    Glover DE; Barrett SCH
    Evolution; 1986 Nov; 40(6):1122-1131. PubMed ID: 28563501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. POPULATION STRUCTURE AND MORPH-SPECIFIC FITNESS DIFFERENCES IN TRISTYLOUS LYTHRUM SALICARIA.
    Ågren J; Ericson L
    Evolution; 1996 Feb; 50(1):126-139. PubMed ID: 28568877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purging of inbreeding depression within a population of Oxalis alpina (Oxalidaceae).
    Weber JJ; Weller SG; Sakai AK; Nguyen A; Tai ND; Domínguez CA; Molina-Freaner FE
    Am J Bot; 2012 May; 99(5):923-32. PubMed ID: 22539518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated evolution of floral morphology and mating-type frequencies in a sexually polymorphic plant.
    Barrett SC; Harder LD; Cole WW
    Evolution; 2004 May; 58(5):964-75. PubMed ID: 15212378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associations between sex-organ deployment and morph bias in related heterostylous taxa with different stylar polymorphisms.
    Ferrero V; Barrett SC; Rojas D; Arroyo J; Navarro L
    Am J Bot; 2017 Jan; 104(1):50-61. PubMed ID: 28039130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil.
    Husband BC; Barrett SC
    Oecologia; 1992 Mar; 89(3):365-371. PubMed ID: 28313085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental evaluation of self-interference in Narcissus assoanus: functional and evolutionary implications.
    Cesaro AC; Barrett SC; Maurice S; Vaissiere BE; Thompson JD
    J Evol Biol; 2004 Nov; 17(6):1367-76. PubMed ID: 15525421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo sequence assembly and characterization of the floral transcriptome in cross- and self-fertilizing plants.
    Ness RW; Siol M; Barrett SC
    BMC Genomics; 2011 Jun; 12():298. PubMed ID: 21649902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different molecular changes underlie the same phenotypic transition: Origins and consequences of independent shifts to homostyly within species.
    Mora-Carrera E; Stubbs RL; Keller B; Léveillé-Bourret É; de Vos JM; Szövényi P; Conti E
    Mol Ecol; 2023 Jan; 32(1):61-78. PubMed ID: 34761469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postpollination discrimination between self and outcross pollen covaries with the mating system of a self-compatible flowering plant.
    Cruzan MB; Barrett SC
    Am J Bot; 2016 Mar; 103(3):568-76. PubMed ID: 26507113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mating system of
    Jiménez-Lobato V; Núñez-Farfán J
    PeerJ; 2021; 9():e10698. PubMed ID: 33777507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.