BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19594956)

  • 1. Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data.
    Ungerer MC; Strakosh SC; Stimpson KM
    BMC Biol; 2009 Jul; 7():40. PubMed ID: 19594956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species.
    Kawakami T; Strakosh SC; Zhen Y; Ungerer MC
    Heredity (Edinb); 2010 Apr; 104(4):341-50. PubMed ID: 20068588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data.
    Tetreault HM; Ungerer MC
    G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species.
    Qiu F; Ungerer MC
    BMC Plant Biol; 2018 Jan; 18(1):6. PubMed ID: 29304730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons.
    Kawakami T; Dhakal P; Katterhenry AN; Heatherington CA; Ungerer MC
    Genome Biol Evol; 2011; 3():156-67. PubMed ID: 21282712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.).
    Mascagni F; Giordani T; Ceccarelli M; Cavallini A; Natali L
    BMC Genomics; 2017 Aug; 18(1):634. PubMed ID: 28821238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genomic organization of Ty3/gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species.
    Staton SE; Ungerer MC; Moore RC
    Am J Bot; 2009 Sep; 96(9):1646-55. PubMed ID: 21622351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional dynamics of LTR retrotransposons in early generation and ancient sunflower hybrids.
    Ungerer MC; Kawakami T
    Genome Biol Evol; 2013; 5(2):329-37. PubMed ID: 23335122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different histories of two highly variable LTR retrotransposons in sunflower species.
    Mascagni F; Cavallini A; Giordani T; Natali L
    Gene; 2017 Nov; 634():5-14. PubMed ID: 28867564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis.
    Llorens C; Fares MA; Moya A
    BMC Evol Biol; 2008 Oct; 8():276. PubMed ID: 18842133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons.
    Bae YA; Moon SY; Kong Y; Cho SY; Rhyu MG
    Mol Biol Evol; 2001 Aug; 18(8):1474-83. PubMed ID: 11470838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrotransposon populations of Vicia species with varying genome size.
    Hill P; Burford D; Martin DM; Flavell AJ
    Mol Genet Genomics; 2005 Jun; 273(5):371-81. PubMed ID: 15891910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats.
    Salina EA; Sergeeva EM; Adonina IG; Shcherban AB; Belcram H; Huneau C; Chalhoub B
    BMC Plant Biol; 2011 Jun; 11():99. PubMed ID: 21635794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions.
    Buti M; Giordani T; Cattonaro F; Cossu RM; Pistelli L; Vukich M; Morgante M; Cavallini A; Natali L
    Theor Appl Genet; 2011 Sep; 123(5):779-91. PubMed ID: 21647740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome
    Zhang QJ; Gao LZ
    G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species.
    Piednoël M; Carrete-Vega G; Renner SS
    Plant J; 2013 Aug; 75(4):699-709. PubMed ID: 23663083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.).
    Vukich M; Giordani T; Natali L; Cavallini A
    BMC Plant Biol; 2009 Dec; 9():150. PubMed ID: 20030800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.