These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19595428)

  • 1. Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries.
    Hale SE; Tomaszewski JE; Luthy RG; Werner D
    Water Res; 2009 Sep; 43(17):4336-46. PubMed ID: 19595428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring and modeling reduction of DDT availability to the water column and mussels following activated carbon amendment of contaminated sediment.
    Tomaszewski JE; McLeod PB; Luthy RG
    Water Res; 2008 Oct; 42(16):4348-56. PubMed ID: 18723202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal variations and possible sources of dichlorodiphenyltrichloroethane (DDT) and its metabolites in rivers in Tianjin, China.
    Tao S; Li BG; He XC; Liu WX; Shi Z
    Chemosphere; 2007 May; 68(1):10-6. PubMed ID: 17292453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated carbon amendment as a treatment for residual DDT in sediment from a superfund site in San Francisco Bay, Richmond, California, USA.
    Tomaszewski JE; Werner D; Luthy RG
    Environ Toxicol Chem; 2007 Oct; 26(10):2143-50. PubMed ID: 17867891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sorption behavior of DDT onto sediment in the presence of surfactant cetyltrimethylammonium bromide.
    Cao X; Han H; Yang G; Gong X; Jing J
    Mar Pollut Bull; 2011 Nov; 62(11):2370-6. PubMed ID: 21958589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring and Modeling Organochlorine Pesticide Response to Activated Carbon Amendment in Tidal Sediment Mesocosms.
    Thompson JM; Hsieh CH; Hoelen TP; Weston DP; Luthy RG
    Environ Sci Technol; 2016 May; 50(9):4769-77. PubMed ID: 27040592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ sorption of hydrophobic organic compounds to sediment amended with activated carbon.
    Kupryianchyk D; Rakowska MI; Grotenhuis JT; Koelmans AA
    Environ Pollut; 2012 Feb; 161():23-9. PubMed ID: 22230063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating phenanthrene sorption on various wood chars.
    James G; Sabatini DA; Chiou CT; Rutherford D; Scott AC; Karapanagioti HK
    Water Res; 2005 Feb; 39(4):549-58. PubMed ID: 15707627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence, source diagnosis, and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta, South China: a review.
    Guo Y; Yu HY; Zeng EY
    Environ Pollut; 2009 Jun; 157(6):1753-63. PubMed ID: 19168270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dissolved organic carbon on sorption of pyrethroids to sediments.
    Delgado-Moreno L; Wu L; Gan J
    Environ Sci Technol; 2010 Nov; 44(22):8473-8. PubMed ID: 20945891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical fluxes and accumulation of organochlorine pesticides in sediments of Haihe River, Tianjin, China.
    Chi J
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):510-5. PubMed ID: 19132283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon.
    Hale SE; Werner D
    Environ Sci Technol; 2010 May; 44(9):3381-7. PubMed ID: 20392086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments.
    Oen AM; Beckingham B; Ghosh U; Kruså ME; Luthy RG; Hartnik T; Henriksen T; Cornelissen G
    Environ Sci Technol; 2012 Jan; 46(2):810-7. PubMed ID: 22128748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon.
    Werner D; Ghosh U; Luthy RG
    Environ Sci Technol; 2006 Jul; 40(13):4211-8. PubMed ID: 16856737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of organic pollutants by marine sediments: implication for the role of particulate organic matter.
    Yu Z; Huang W; Song J; Qian Y; Peng P
    Chemosphere; 2006 Dec; 65(11):2493-501. PubMed ID: 16777187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible sorption of pentachlorophenol to sediments: experimental observations.
    Chen YX; Chen HL; Xu YT; Shen MW
    Environ Int; 2004 Mar; 30(1):31-7. PubMed ID: 14664862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of polychlorinated biphenyls to activated carbon: equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings.
    McDonough KM; Fairey JL; Lowry GV
    Water Res; 2008 Feb; 42(3):575-84. PubMed ID: 17761210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of organochlorine pesticides from water to polyethylene passive samplers.
    Hale SE; Martin TJ; Goss KU; Arp HP; Werner D
    Environ Pollut; 2010 Jul; 158(7):2511-7. PubMed ID: 20398988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments.
    Wang S; Jin X; Bu Q; Zhou X; Wu F
    J Hazard Mater; 2006 Feb; 128(2-3):95-105. PubMed ID: 16181733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.