BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19595432)

  • 1. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh.
    Castro R; Pereira S; Lima A; Corticeiro S; Válega M; Pereira E; Duarte A; Figueira E
    Chemosphere; 2009 Sep; 76(10):1348-55. PubMed ID: 19595432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure.
    Válega M; Lima AI; Figueira EM; Pereira E; Pardal MA; Duarte AC
    Chemosphere; 2009 Jan; 74(4):530-6. PubMed ID: 19004465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites.
    Sousa AI; Caçador I; Lillebø AI; Pardal MA
    Chemosphere; 2008 Jan; 70(5):850-7. PubMed ID: 17764720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury uptake and allocation in Juncus maritimus: implications for phytoremediation and restoration of a mercury contaminated salt marsh.
    Figueira E; Freitas R; Pereira E; Duarte A
    J Environ Monit; 2012 Aug; 14(8):2181-8. PubMed ID: 22739436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stock and losses of trace metals from salt marsh plants.
    Caçador I; Caetano M; Duarte B; Vale C
    Mar Environ Res; 2009 Mar; 67(2):75-82. PubMed ID: 19110308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: possible effects of eutrophication.
    Coelho JP; Pereira ME; Duarte AC; Pardal MA
    Mar Pollut Bull; 2009 Aug; 58(3):358-65. PubMed ID: 19062048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor.
    Válega M; Lillebø AI; Pereira ME; Caçador I; Duarte AC; Pardal MA
    Chemosphere; 2008 Nov; 73(8):1224-9. PubMed ID: 18799184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury cycling and sequestration in salt marshes sediments: an ecosystem service provided by Juncus maritimus and Scirpus maritimus.
    Marques B; Lillebø AI; Pereira E; Duarte AC
    Environ Pollut; 2011 Jul; 159(7):1869-76. PubMed ID: 21514707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term effects of mercury in a salt marsh: hysteresis in the distribution of vegetation following recovery from contamination.
    Válega M; Lillebø AI; Pereira ME; Duarte AC; Pardal MA
    Chemosphere; 2008 Mar; 71(4):765-72. PubMed ID: 18061237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal).
    Duarte B; Caetano M; Almeida PR; Vale C; Caçador I
    Environ Pollut; 2010 May; 158(5):1661-8. PubMed ID: 20036450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenological development stages variation versus mercury tolerance, accumulation, and allocation in salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in Ria de Aveiro coastal lagoon (Portugal).
    Anjum NA; Ahmad I; Válega M; Figueira E; Duarte AC; Pereira E
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3910-22. PubMed ID: 23184133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms.
    Cabrita MT; Duarte B; Cesário R; Mendes R; Hintelmann H; Eckey K; Dimock B; Caçador I; Canário J
    Sci Total Environ; 2019 Feb; 650(Pt 1):111-120. PubMed ID: 30196211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halimione portulacoides (L.) physiological/biochemical characterization for its adaptive responses to environmental mercury exposure.
    Anjum NA; Israr M; Duarte AC; Pereira ME; Ahmad I
    Environ Res; 2014 May; 131():39-49. PubMed ID: 24641832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance.
    Negrin VL; Teixeira B; Godinho RM; Mendes R; Vale C
    Mar Pollut Bull; 2017 Aug; 121(1-2):78-84. PubMed ID: 28554828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima.
    Reboreda R; Caçador I
    Chemosphere; 2007 Nov; 69(10):1655-61. PubMed ID: 17599388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of different salt marsh plants for petroleum hydrocarbons remediation.
    Couto MN; Basto MC; Vasconcelos MT
    Chemosphere; 2011 Aug; 84(8):1052-7. PubMed ID: 21601235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization, and influence of metal(loid) contamination.
    Fidalgo C; Henriques I; Rocha J; Tacão M; Alves A
    Environ Sci Pollut Res Int; 2016 May; 23(10):10200-14. PubMed ID: 26875822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.