BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19595434)

  • 1. Physiological adaptations in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate.
    Backor M; Klejdus B; Vantová I; Kovácik J
    Chemosphere; 2009 Sep; 76(10):1340-3. PubMed ID: 19595434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper tolerance in the macrolichens Cladonia furcata and Cladina arbuscula subsp. mitis is constitutive rather than inducible.
    Bačkor M; Péli ER; Vantová I
    Chemosphere; 2011 Sep; 85(1):106-13. PubMed ID: 21676428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb.
    Pisani T; Munzi S; Paoli L; Bačkor M; Kováčik J; Piovár J; Loppi S
    Chemosphere; 2011 Feb; 82(7):1030-7. PubMed ID: 21094972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lichens as a tool for biogeochemical prospecting.
    Chettri MK; Sawidis T; Karataglis S
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):322-35. PubMed ID: 9469887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress.
    Dzubaj A; Backor M; Tomko J; Peli E; Tuba Z
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):319-26. PubMed ID: 17512591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences.
    Backor M; Peksa O; Skaloud P; Backorová M
    Ecotoxicol Environ Saf; 2010 May; 73(4):603-12. PubMed ID: 20031214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of copper stress on cup lichens Cladonia humilis and C. subconistea growing on copper-hyperaccumulating moss Scopelophila cataractae at copper-polluted sites in Japan.
    Nakajima H; Fujimoto K; Yoshitani A; Yamamoto Y; Sakurai H; Itoh K
    Ecotoxicol Environ Saf; 2012 Oct; 84():341-6. PubMed ID: 22906716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada.
    Carreras HA; Wannaz ED; Perez CA; Pignata ML
    Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of lichen (Cetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland.
    Riget F; Asmund G; Aastrup P
    Sci Total Environ; 2000 Jan; 245(1-3):137-48. PubMed ID: 10682362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metals in Racomitrium lanuginosum from Arctic (SW Spitsbergen, Svalbard archipelago) and alpine (Karkonosze, SW Poland) tundra.
    Wojtuń B; Samecka-Cymerman A; Kolon K; Kempers AJ
    Environ Sci Pollut Res Int; 2018 May; 25(13):12444-12450. PubMed ID: 29460250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lichens as biomonitors of air quality around a diamond mine, northwest territories, Canada.
    Naeth MA; Wilkinson SR
    J Environ Qual; 2008; 37(5):1675-84. PubMed ID: 18689728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of trace metal levels in some moss and lichen samples collected from near the motorway in Turkey.
    Mendil D; Celik F; Tuzen M; Soylak M
    J Hazard Mater; 2009 Jul; 166(2-3):1344-50. PubMed ID: 19153010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution.
    Kosior G; Samecka-Cymerman A; Kolon K; Kempers AJ
    Chemosphere; 2010 Sep; 81(3):321-6. PubMed ID: 20696462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal homeostasis in Hypogymnia physodes is controlled by lichen substances.
    Hauck M
    Environ Pollut; 2008 May; 153(2):304-8. PubMed ID: 17964034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration state of the moss Hylocomium splendens and the lichen Cladina stellaris governs uptake and revolatilization of airborne α- and γ-hexachlorocyclohexane.
    Kylin H; Bouwman H
    Environ Sci Technol; 2012 Oct; 46(20):10982-9. PubMed ID: 22992198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of copper and lead on lipid metabolism in bryophytes and lichens.
    Guschina IA; Harwood JL
    Biochem Soc Trans; 2000 Dec; 28(6):910-2. PubMed ID: 11171254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses.
    Shakya K; Chettri MK; Sawidis T
    Arch Environ Contam Toxicol; 2008 Apr; 54(3):412-21. PubMed ID: 17960450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioindication of trace metals in Brachythecium rutabulum around a copper smelter in Legnica (Southwest Poland): Use of a new form of data presentation in the form of a self-organizing feature map.
    Samecka-Cymerman A; Stankiewicz A; Kolon K; Kempers AJ
    Arch Environ Contam Toxicol; 2009 May; 56(4):717-22. PubMed ID: 18931962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper Content and Resistance Mechanisms in the Terrestrial Moss Ptychostomum capillare: A Case Study in an Abandoned Copper Mine in Central Spain.
    Elvira NJ; Medina NG; Leo M; Cala V; Estébanez B
    Arch Environ Contam Toxicol; 2020 Jul; 79(1):49-59. PubMed ID: 32393992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrity of lichen cell membranes as an indicator of heavy-metal pollution levels in soil.
    Osyczka P; Rola K
    Ecotoxicol Environ Saf; 2019 Jun; 174():26-34. PubMed ID: 30818257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.