These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19595589)

  • 21. Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition.
    Hildebrand A; Kasuga T; Fan Z
    PLoS One; 2015; 10(4):e0123006. PubMed ID: 25849253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mediator facilitated, laccase catalysed oxidation of granular potato starch and the physico-chemical characterisation of the oxidized products.
    Mathew S; Adlercreutz P
    Bioresour Technol; 2009 Jul; 100(14):3576-84. PubMed ID: 19299125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase.
    Pitsawong W; Sucharitakul J; Prongjit M; Tan TC; Spadiut O; Haltrich D; Divne C; Chaiyen P
    J Biol Chem; 2010 Mar; 285(13):9697-9705. PubMed ID: 20089849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioelectrocatalytic reduction of oxygen at gold nanoparticles modified with laccase.
    Krikstolaityte V; Barrantes A; Ramanavicius A; Arnebrant T; Shleev S; Ruzgas T
    Bioelectrochemistry; 2014 Feb; 95():1-6. PubMed ID: 24134999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical characterization of the pyranose 2-oxidase variant N593C shows a complete loss of the oxidase function with full preservation of substrate (dehydrogenase) activity.
    Brugger D; Sützl L; Zahma K; Haltrich D; Peterbauer CK; Stoica L
    Phys Chem Chem Phys; 2016 Nov; 18(47):32072-32077. PubMed ID: 27808302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioconversion of D-glucose into D-glucosone by glucose 2-oxidase from Coriolus versicolor at moderate pressures.
    Karmali A; Coelho J
    Appl Biochem Biotechnol; 2011 Apr; 163(7):906-17. PubMed ID: 20872184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrroloquinoline quinone-dependent carbohydrate dehydrogenase: activity enhancement and the role of artificial electron acceptors.
    Kulys J; Tetianec L; Bratkovskaja I
    Biotechnol J; 2010 Aug; 5(8):822-8. PubMed ID: 20669254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering pyranose 2-oxidase for modified oxygen reactivity.
    Brugger D; Krondorfer I; Shelswell C; Huber-Dittes B; Haltrich D; Peterbauer CK
    PLoS One; 2014; 9(10):e109242. PubMed ID: 25296188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic oxidation of manganese ions catalysed by laccase.
    Gorbacheva M; Morozova O; Shumakovich G; Streltsov A; Shleev S; Yaropolov A
    Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of the gating segment in the substrate-recognition loop of pyranose 2-oxidase.
    Spadiut O; Tan TC; Pisanelli I; Haltrich D; Divne C
    FEBS J; 2010 Jul; 277(13):2892-909. PubMed ID: 20528921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic and electrochemical oxidation of N-hydroxy compounds. Redox potential, electron-transfer kinetics, and radical stability.
    Xu F; Deussen HJ; Lopez B; Lam L; Li K
    Eur J Biochem; 2001 Aug; 268(15):4169-76. PubMed ID: 11488909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry.
    Giffhorn F
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):727-40. PubMed ID: 11152063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus.
    Gunne M; Höppner A; Hagedoorn PL; Urlacher VB
    FEBS J; 2014 Sep; 281(18):4307-18. PubMed ID: 24548692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Prog; 2009; 25(3):763-73. PubMed ID: 19496113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of redox polymer-mediated enzyme electrodes.
    Gallaway JW; Calabrese Barton SA
    J Am Chem Soc; 2008 Jul; 130(26):8527-36. PubMed ID: 18540577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laccase-catalysed iodide oxidation in presence of methyl syringate.
    Kulys J; Bratkovskaja I; Vidziunaite R
    Biotechnol Bioeng; 2005 Oct; 92(1):124-8. PubMed ID: 16080184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feedback mode SECM study of laccase and bilirubin oxidase immobilised in a sol-gel processed silicate film.
    Nogala W; Szot K; Burchardt M; Roelfs F; Rogalski J; Opallo M; Wittstock G
    Analyst; 2010 Aug; 135(8):2051-8. PubMed ID: 20532339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing.
    Boussaad S; Diner BA; Fan J
    J Am Chem Soc; 2008 Mar; 130(12):3780-7. PubMed ID: 18321094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insight into the oxidation of sinapic acid by CotA laccase.
    Xie T; Liu Z; Liu Q; Wang G
    J Struct Biol; 2015 May; 190(2):155-61. PubMed ID: 25799944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.