These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 19596006)
41. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein. Walsh P; Simonetti K; Sharpe S Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656 [TBL] [Abstract][Full Text] [Related]
42. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family. Iconomidou VA; Chryssikos GD; Gionis V; Galanis AS; Cordopatis P; Hoenger A; Hamodrakas SJ J Struct Biol; 2006 Dec; 156(3):480-8. PubMed ID: 17056273 [TBL] [Abstract][Full Text] [Related]
43. Effect of beta-sheet propensity on peptide aggregation. Bellesia G; Shea JE J Chem Phys; 2009 Apr; 130(14):145103. PubMed ID: 19368476 [TBL] [Abstract][Full Text] [Related]
44. High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Siemer AB; Ritter C; Ernst M; Riek R; Meier BH Angew Chem Int Ed Engl; 2005 Apr; 44(16):2441-4. PubMed ID: 15770629 [No Abstract] [Full Text] [Related]
45. Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A. Colombo G; Meli M; De Simone A Proteins; 2008 Feb; 70(3):863-72. PubMed ID: 17803210 [TBL] [Abstract][Full Text] [Related]
46. Additional supra-self-assembly of human serum albumin under amyloid-like-forming solution conditions. Juárez J; Taboada P; Goy-López S; Cambón A; Madec MB; Yeates SG; Mosquera V J Phys Chem B; 2009 Sep; 113(36):12391-9. PubMed ID: 19681594 [TBL] [Abstract][Full Text] [Related]
47. Unraveling the mysteries of protein folding and misfolding. Ecroyd H; Carver JA IUBMB Life; 2008 Dec; 60(12):769-74. PubMed ID: 18767168 [TBL] [Abstract][Full Text] [Related]
48. Conformational preferences of non-polar amino acid residues: an additional factor in amyloid formation. Johansson J; Nerelius C; Willander H; Presto J Biochem Biophys Res Commun; 2010 Nov; 402(3):515-8. PubMed ID: 20971069 [TBL] [Abstract][Full Text] [Related]
49. Observation of highly flexible residues in amyloid fibrils of the HET-s prion. Siemer AB; Arnold AA; Ritter C; Westfeld T; Ernst M; Riek R; Meier BH J Am Chem Soc; 2006 Oct; 128(40):13224-8. PubMed ID: 17017802 [TBL] [Abstract][Full Text] [Related]
50. 3D domain-swapped human cystatin C with amyloidlike intermolecular beta-sheets. Janowski R; Kozak M; Abrahamson M; Grubb A; Jaskolski M Proteins; 2005 Nov; 61(3):570-8. PubMed ID: 16170782 [TBL] [Abstract][Full Text] [Related]
51. Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: antiparallel versus parallel association. Vitagliano L; Esposito L; Pedone C; De Simone A Biochem Biophys Res Commun; 2008 Dec; 377(4):1036-41. PubMed ID: 18938138 [TBL] [Abstract][Full Text] [Related]
52. The effects of aggregation-inducing motifs on amyloid formation of model proteins related to neurodegenerative diseases. Tanaka M; Machida Y; Nishikawa Y; Akagi T; Morishima I; Hashikawa T; Fujisawa T; Nukina N Biochemistry; 2002 Aug; 41(32):10277-86. PubMed ID: 12162743 [TBL] [Abstract][Full Text] [Related]
55. Spin labeling analysis of amyloids and other protein aggregates. Margittai M; Langen R Methods Enzymol; 2006; 413():122-39. PubMed ID: 17046394 [TBL] [Abstract][Full Text] [Related]
57. A molecular dynamics study of the interaction of D-peptide amyloid inhibitors with their target sequence reveals a potential inhibitory pharmacophore conformation. Esteras-Chopo A; Morra G; Moroni E; Serrano L; Lopez de la Paz M; Colombo G J Mol Biol; 2008 Oct; 383(1):266-80. PubMed ID: 18703072 [TBL] [Abstract][Full Text] [Related]