BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19596054)

  • 41. The effects of mitotic inhibition on the spinal cord response to the superimposed injuries of spinal cord hemisection and peripheral axotomy.
    Gould DJ; Goshgarian HG
    Exp Neurol; 1999 Aug; 158(2):394-402. PubMed ID: 10415145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.
    Lee KZ
    J Physiol; 2016 Oct; 594(20):6009-6024. PubMed ID: 27106483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supraspinal respiratory plasticity following acute cervical spinal cord injury.
    Bezdudnaya T; Marchenko V; Zholudeva LV; Spruance VM; Lane MA
    Exp Neurol; 2017 Jul; 293():181-189. PubMed ID: 28433644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    Exp Neurol; 2013 Sep; 247():101-9. PubMed ID: 23583688
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ipsilateral inspiratory intercostal muscle activity after C2 spinal cord hemisection in rats.
    Beth Zimmer M; Grant JS; Ayar AE; Goshgarian HG
    J Spinal Cord Med; 2015 Mar; 38(2):224-30. PubMed ID: 24969369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MK-801 upregulates NR2A protein levels and induces functional recovery of the ipsilateral hemidiaphragm following acute C2 hemisection in adult rats.
    Alilain WJ; Goshgarian HG
    J Spinal Cord Med; 2007; 30(4):346-54. PubMed ID: 17853656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury.
    Vinit S; Kastner A
    Respir Physiol Neurobiol; 2009 Nov; 169(2):115-22. PubMed ID: 19682608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of Akt/FKHR in the medulla oblongata contributes to spontaneous respiratory recovery after incomplete spinal cord injury in adult rats.
    Felix MS; Bauer S; Darlot F; Muscatelli F; Kastner A; Gauthier P; Matarazzo V
    Neurobiol Dis; 2014 Sep; 69():93-107. PubMed ID: 24878511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spinal activation of the cAMP-PKA pathway induces respiratory motor recovery following high cervical spinal cord injury.
    Kajana S; Goshgarian HG
    Brain Res; 2008 Sep; 1232():206-13. PubMed ID: 18656458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury.
    Goulão M; Ghosh B; Urban MW; Sahu M; Mercogliano C; Charsar BA; Komaravolu S; Block CG; Smith GM; Wright MC; Lepore AC
    Glia; 2019 Mar; 67(3):452-466. PubMed ID: 30548313
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The superimposed effects of chronic phrenicotomy and cervical spinal cord hemisection on synaptic cytoarchitecture in the rat phrenic nucleus.
    Liou WW; Goshgarian HG
    Exp Neurol; 1997 May; 145(1):258-67. PubMed ID: 9184128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrastructural changes in the rat phrenic nucleus developing within 2 h after cervical spinal cord hemisection.
    Sperry MA; Goshgarian HG
    Exp Neurol; 1993 Apr; 120(2):233-44. PubMed ID: 7684001
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bilateral bulbospinal projections to pudendal motoneuron circuitry after chronic spinal cord hemisection injury as revealed by transsynaptic tracing with pseudorabies virus.
    Johnson RD; Chadha HK; Dugan VP; Gupta DS; Ferrero SL; Hubscher CH
    J Neurotrauma; 2011 Apr; 28(4):595-605. PubMed ID: 21265606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Administration of phosphodiesterase inhibitors and an adenosine A1 receptor antagonist induces phrenic nerve recovery in high cervical spinal cord injured rats.
    Kajana S; Goshgarian HG
    Exp Neurol; 2008 Apr; 210(2):671-80. PubMed ID: 18289533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phrenic motoneuron morphology in the neonatal rat.
    Lindsay AD; Greer JJ; Feldman JL
    J Comp Neurol; 1991 Jun; 308(2):169-79. PubMed ID: 1716267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of glutamatergic and serotonergic neurotransmission on diaphragm muscle activity after cervical spinal hemisection.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    J Neurophysiol; 2017 Sep; 118(3):1732-1738. PubMed ID: 28659464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of peripheral adenosine A2 receptors in adenosine A1 receptor-mediated recovery of respiratory motor function after upper cervical spinal cord hemisection.
    James E; Nantwi KD
    J Spinal Cord Med; 2006; 29(1):57-66. PubMed ID: 16572566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The crossed phrenic phenomenon.
    Ghali MGZ
    Neural Regen Res; 2017 Jun; 12(6):845-864. PubMed ID: 28761411
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GABA, not glycine, mediates inhibition of latent respiratory motor pathways after spinal cord injury.
    Zimmer MB; Goshgarian HG
    Exp Neurol; 2007 Feb; 203(2):493-501. PubMed ID: 17046753
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glial changes in the phrenic nucleus following superimposed cervical spinal cord hemisection and peripheral chronic phrenicotomy injuries in adult rats.
    Gould DJ; Goshgarian HG
    Exp Neurol; 1997 Nov; 148(1):1-9. PubMed ID: 9398444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.