BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1959611)

  • 1. Kirromycin-induced modifications facilitate the separation of EF-Tu species and reveal intermolecular interactions.
    Anborgh PH; Swart GW; Parmeggiani A
    FEBS Lett; 1991 Nov; 292(1-2):232-6. PubMed ID: 1959611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the mutation glycine-222----aspartic acid on the functions of elongation factor Tu.
    Swart GW; Parmeggiani A; Kraal B; Bosch L
    Biochemistry; 1987 Apr; 26(7):2047-54. PubMed ID: 3297141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular properties of two mutant species of the elongation factor Tu.
    Van der Meide PH; Duisterwinkel FJ; De Graaf JM; Kraal B; Bosch L; Douglass J; Blumenthal T
    Eur J Biochem; 1981 Jun; 117(1):1-6. PubMed ID: 7021152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered regulation of the guanosine 5'-triphosphate activity in a kirromycin-resistant elongation factor Tu.
    Fasano O; Parmeggiani A
    Biochemistry; 1981 Mar; 20(5):1361-6. PubMed ID: 6112013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the antibiotic pulvomycin on the elongation factor Tu-dependent reactions. Comparison with other antibiotics.
    Anborgh PH; Okamura S; Parmeggiani A
    Biochemistry; 2004 Dec; 43(49):15550-6. PubMed ID: 15581367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction between aminoacyl-tRNA and the mutant elongation factors Tu AR and B0.
    Abrahams JP; Acampo JJ; Ott G; Sprinzl M; de Graaf JM; Talens A; Kraal B
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):226-9. PubMed ID: 2207147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP.
    Abdulkarim F; Liljas L; Hughes D
    FEBS Lett; 1994 Sep; 352(2):118-22. PubMed ID: 7925958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, crystallization and X-ray analysis of the quaternary complex of Phe-tRNA(Phe), EF-Tu, a GTP analog and kirromycin.
    Kristensen O; Reshetnikova L; Nissen P; Siboska G; Thirup S; Nyborg J
    FEBS Lett; 1996 Dec; 399(1-2):59-62. PubMed ID: 8980119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongation factor Tu resistant to kirromycin in an Escherichia coli mutant altered in both tuf genes.
    Fischer E; Wolf H; Hantke K; Parmeggiani A
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4341-5. PubMed ID: 337296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enacyloxin IIa pinpoints a binding pocket of elongation factor Tu for development of novel antibiotics.
    Parmeggiani A; Krab IM; Watanabe T; Nielsen RC; Dahlberg C; Nyborg J; Nissen P
    J Biol Chem; 2006 Feb; 281(5):2893-900. PubMed ID: 16257965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongation factor Tu isolated from Escherichia coli mutants altered in TufA and tufB.
    Van der Meide PH; Borman TH; Van Kimmenade AM; Van de Putte P; Bosch L
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3922-6. PubMed ID: 7001448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Q beta replicase containing wild type and mutant tufA and tufB gene.
    Blumenthal T; Saari B; Van der Meide PH; Bosch L
    J Biol Chem; 1980 Jun; 255(11):5300-5. PubMed ID: 6989824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mg2+ is not catalytically required in the intrinsic and kirromycin-stimulated GTPase action of Thermus thermophilus EF-Tu.
    Rutthard H; Banerjee A; Makinen MW
    J Biol Chem; 2001 Jun; 276(22):18728-33. PubMed ID: 11274193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elongation factor Tu1 of the antibiotic GE2270A producer Planobispora rosea has an unexpected resistance profile against EF-Tu targeted antibiotics.
    Möhrle VG; Tieleman LN; Kraal B
    Biochem Biophys Res Commun; 1997 Jan; 230(2):320-6. PubMed ID: 9016775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kirromycin drastically reduces the affinity of Escherichia coli elongation factor Tu for aminoacyl-tRNA.
    Abrahams JP; van Raaij MJ; Ott G; Kraal B; Bosch L
    Biochemistry; 1991 Jul; 30(27):6705-10. PubMed ID: 2065055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant ribosomes can generate dominant kirromycin resistance.
    Tubulekas I; Buckingham RH; Hughes D
    J Bacteriol; 1991 Jun; 173(12):3635-43. PubMed ID: 2050625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutant elongation factor Tu which does not immobilize the ribosome upon binding of kirromycin.
    Duisterwinkel FJ; De Graaf JM; Schretlen PJ; Kraal B; Bosch L
    Eur J Biochem; 1981 Jun; 117(1):7-12. PubMed ID: 7021158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the elongation factors from calf brain. 2. Functional properties of EF-1 alpha, the action of physiological ligands and kirromycin.
    Crechet JB; Parmeggiani A
    Eur J Biochem; 1986 Dec; 161(3):647-53. PubMed ID: 3641717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a kirromycin-resistant elongation factor Tu from Escherichia coli.
    Ivell R; Fasano O; Crechet JB; Parmeggiani A
    Biochemistry; 1981 Mar; 20(5):1355-61. PubMed ID: 7013793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.