These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19596283)

  • 1. A nerve model of greatly increased energy-efficiency and encoding flexibility over the Hodgkin-Huxley model.
    Fohlmeister JF
    Brain Res; 2009 Nov; 1296():225-33. PubMed ID: 19596283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.
    Fohlmeister JF
    J Neurophysiol; 2015 Jun; 113(10):3759-77. PubMed ID: 25867741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling temporal behavior of postnatal cat retinal ganglion cells.
    Benison G; Keizer J; Chalupa LM; Robinson DW
    J Theor Biol; 2001 May; 210(2):187-99. PubMed ID: 11371174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative analysis of models of Na+ channel gating for mammalian and invertebrate nonmyelinated axons: relationship to energy efficient action potentials.
    Clay JR
    Prog Biophys Mol Biol; 2013 Jan; 111(1):1-7. PubMed ID: 22922062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the leak conductance in the squid giant axon.
    Seely J; Crotty P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021906. PubMed ID: 20866836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physical model of nerve axon. II: Action potential and excitation currents. Voltage-clamp studies of chemical driving forces of Na+ and K+ in squid giant axon.
    Chang DC
    Physiol Chem Phys; 1979; 11(3):263-88. PubMed ID: 531110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator.
    Aihara K; Matsumoto G; Ikegaya Y
    J Theor Biol; 1984 Jul; 109(2):249-69. PubMed ID: 6482467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of sodium and potassium channels of the squid giant axon far below 0 degrees C.
    Kukita F
    J Membr Biol; 1982; 68(2):151-60. PubMed ID: 6286975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitability of the Clay model for squid giant axon.
    Pakdaman K; Kauffmann A; Mestivier D
    Biosystems; 2003 Sep; 71(1-2):157-67. PubMed ID: 14568216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons.
    Baranauskas G; Martina M
    J Neurosci; 2006 Jan; 26(2):671-84. PubMed ID: 16407565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.
    Liu Y; Yue Y; Yu Y; Liu L; Yu L
    J Comput Neurosci; 2018 Apr; 44(2):219-231. PubMed ID: 29327161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.
    Sengupta B; Stemmler M; Laughlin SB; Niven JE
    PLoS Comput Biol; 2010 Jul; 6(7):e1000840. PubMed ID: 20617202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials.
    Widmer H; Amerdeil H; Fontanaud P; Desarménien MG
    J Neurophysiol; 1997 Jan; 77(1):260-71. PubMed ID: 9120568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The standard Hodgkin-Huxley model and squid axons in reduced external Ca++ fail to accommodate to slowly rising currents.
    Jakobsson E; Guttman R
    Biophys J; 1980 Aug; 31(2):293-7. PubMed ID: 7260290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic energy cost of action potential velocity.
    Crotty P; Sangrey T; Levy WB
    J Neurophysiol; 2006 Sep; 96(3):1237-46. PubMed ID: 16554507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of bistability in squid giant axons with alkaline intracellular pH.
    Clay JR; Shrier A
    J Membr Biol; 2002 Jun; 187(3):213-23. PubMed ID: 12163979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidergic counter-regulation of Ca(2+)- and Na(+)-dependent K(+) currents modulates the shape of action potentials in neurosecretory insect neurons.
    Wicher D; Berlau J; Walther C; Borst A
    J Neurophysiol; 2006 Jan; 95(1):311-22. PubMed ID: 16177173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proposed membrane model for generation of sodium currents in squid giant axons.
    Matsumoto G
    J Theor Biol; 1984 Apr; 107(4):649-66. PubMed ID: 6330461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Squid to Mammals with the HH Model through the Nav Channels' Half-Activation-Voltage Parameter.
    Krouchev NI; Rattay F; Sawan M; Vinet A
    PLoS One; 2015; 10(12):e0143570. PubMed ID: 26629692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical solutions of the Frankenhaeuser-Huxley equations I: minimal model for backpropagation of action potentials in sparsely excitable dendrites.
    Poznanski RR
    J Integr Neurosci; 2004 Sep; 3(3):267-99. PubMed ID: 15366097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.