BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 19596498)

  • 1. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2009 Oct; 100(10):854-7. PubMed ID: 19596498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus.
    Lysandrou M; Pashalidis I
    J Environ Radioact; 2008 Feb; 99(2):359-66. PubMed ID: 17892903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox chemistry of sulphate and uranium in a phosphogypsum tailings dump.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2010 Aug; 101(8):601-5. PubMed ID: 20359795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes.
    Pérez-López R; Alvarez-Valero AM; Nieto JM
    J Hazard Mater; 2007 Sep; 148(3):745-50. PubMed ID: 17683858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations on the activity concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan phosphogypsum and fertilizers.
    Al-Jundi J; Al-Ahmad N; Shehadeh H; Afaneh F; Maghrabi M; Gerstmann U; Höllriegl V; Oeh U
    Radiat Prot Dosimetry; 2008; 131(4):449-54. PubMed ID: 18701517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclide migration and the environmental radiochemistry of Florida phosphogypsum.
    Burnett WC; Elzerman AW
    J Environ Radioact; 2001; 54(1):27-51. PubMed ID: 11379072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration.
    Cárdenas-Escudero C; Morales-Flórez V; Pérez-López R; Santos A; Esquivias L
    J Hazard Mater; 2011 Nov; 196():431-5. PubMed ID: 21982535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of radiation exposures in a tropical phosphogypsum disposal environment.
    Haridasan PP; Pillai PM; Tripathi RM; Puranik VD
    Radiat Prot Dosimetry; 2009 Jul; 135(3):211-5. PubMed ID: 19483206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorization of phosphogypsum waste as asphaltic bitumen modifier.
    Cuadri AA; Navarro FJ; García-Morales M; Bolívar JP
    J Hazard Mater; 2014 Aug; 279():11-6. PubMed ID: 25036995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microencapsulation of phosphogypsum into a sulfur polymer matrix: physico-chemical and radiological characterization.
    López FA; Gázquez M; Alguacil FJ; Bolívar JP; García-Díaz I; López-Coto I
    J Hazard Mater; 2011 Aug; 192(1):234-45. PubMed ID: 21641111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates.
    Papaslioti EM; Pérez-López R; Parviainen A; Sarmiento AM; Nieto JM; Marchesi C; Delgado-Huertas A; Garrido CJ
    Mar Pollut Bull; 2018 Feb; 127():695-703. PubMed ID: 29475713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure.
    Silva LF; Hower JC; Izquierdo M; Querol X
    Sci Total Environ; 2010 Oct; 408(21):5117-22. PubMed ID: 20701953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and speciation of uranium in synthetic gypsum (CaSO
    Lin J; Sun W; Desmarais J; Chen N; Feng R; Zhang P; Li D; Lieu A; Tse JS; Pan Y
    J Environ Radioact; 2018 Jan; 181():8-17. PubMed ID: 29096153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential radiological impact from a Brazilian phosphate facility.
    Glória dos Reis R; da Costa Lauria D
    J Environ Radioact; 2014 Oct; 136():188-94. PubMed ID: 24971522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.
    Santos AJ; Mazzilli BP; Fávaro DI; Silva PS
    J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uranium(VI) solubility and speciation in simulated elemental human biological fluids.
    Sutton M; Burastero SR
    Chem Res Toxicol; 2004 Nov; 17(11):1468-80. PubMed ID: 15540945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching Characteristics of Calcium and Strontium from Phosphogypsum Under Acid Rain.
    Wang M; Luo H; Chen Y; Yang J
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):310-315. PubMed ID: 29177696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of phosphogypsum in agriculture and the radiological impact.
    Papastefanou C; Stoulos S; Ioannidou A; Manolopoulou M
    J Environ Radioact; 2006; 89(2):188-98. PubMed ID: 16806608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranium ((234)U, (235)U and (238)U) contamination of the environment surrounding phosphogypsum waste heap in Wiślinka (northern Poland).
    Olszewski G; Boryło A; Skwarzec B
    J Environ Radioact; 2015 Aug; 146():56-66. PubMed ID: 25913057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting.
    Cornu JY; Parat C; Schneider A; Authier L; Dauthieu M; Sappin-Didier V; Denaix L
    Chemosphere; 2009 Jul; 76(4):502-8. PubMed ID: 19356783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.