These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 1959650)
1. Mutation of an evolutionarily conserved tyrosine residue in the active site of a human class Alpha glutathione transferase. Stenberg G; Board PG; Mannervik B FEBS Lett; 1991 Nov; 293(1-2):153-5. PubMed ID: 1959650 [TBL] [Abstract][Full Text] [Related]
2. Role of invariant tyrosines in a crustacean mu-class glutathione S-transferase from shrimp Litopenaeus vannamei: site-directed mutagenesis of Y7 and Y116. Contreras-Vergara CA; Valenzuela-Soto EM; Arvizu-Flores AA; Sotelo-Mundo RR; Yepiz-Plascencia G Biochimie; 2008 Jun; 90(6):968-71. PubMed ID: 18314012 [TBL] [Abstract][Full Text] [Related]
3. Effects of directed mutagenesis on conserved arginine residues in a human Class Alpha glutathione transferase. Stenberg G; Board PG; Carlberg I; Mannervik B Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):549-55. PubMed ID: 2006917 [TBL] [Abstract][Full Text] [Related]
4. Tyrosine-7 is an essential residue for the catalytic activity of human class PI glutathione S-transferase: chemical modification and site-directed mutagenesis studies. Kong KH; Nishida M; Inoue H; Takahashi K Biochem Biophys Res Commun; 1992 Feb; 182(3):1122-9. PubMed ID: 1540159 [TBL] [Abstract][Full Text] [Related]
5. Role of the glutamyl alpha-carboxylate of the substrate glutathione in the catalytic mechanism of human glutathione transferase A1-1. Gustafsson A; Pettersson PL; Grehn L; Jemth P; Mannervik B Biochemistry; 2001 Dec; 40(51):15835-45. PubMed ID: 11747461 [TBL] [Abstract][Full Text] [Related]
6. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. Thom R; Dixon DP; Edwards R; Cole DJ; Lapthorn AJ J Mol Biol; 2001 May; 308(5):949-62. PubMed ID: 11352584 [TBL] [Abstract][Full Text] [Related]
7. Participation of the phenolic hydroxyl group of Tyr-8 in the catalytic mechanism of human glutathione transferase P1-1. Kolm RH; Sroga GE; Mannervik B Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):537-40. PubMed ID: 1637343 [TBL] [Abstract][Full Text] [Related]
8. The C-terminal region of human glutathione transferase A1-1 affects the rate of glutathione binding and the ionization of the active-site Tyr9. Gustafsson A; Etahadieh M; Jemth P; Mannervik B Biochemistry; 1999 Dec; 38(49):16268-75. PubMed ID: 10587450 [TBL] [Abstract][Full Text] [Related]
9. Active-site residues governing high steroid isomerase activity in human glutathione transferase A3-3. Johansson AS; Mannervik B J Biol Chem; 2002 May; 277(19):16648-54. PubMed ID: 11872752 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1. Widersten M; Björnestedt R; Mannervik B Biochemistry; 1996 Jun; 35(24):7731-42. PubMed ID: 8672473 [TBL] [Abstract][Full Text] [Related]
11. Mechanism-based phage display selection of active-site mutants of human glutathione transferase A1-1 catalyzing SNAr reactions. Hansson LO; Widersten M; Mannervik B Biochemistry; 1997 Sep; 36(37):11252-60. PubMed ID: 9287168 [TBL] [Abstract][Full Text] [Related]
12. Residue 219 impacts on the dynamics of the C-terminal region in glutathione transferase A1-1: implications for stability and catalytic and ligandin functions. Mosebi S; Sayed Y; Burke J; Dirr HW Biochemistry; 2003 Dec; 42(51):15326-32. PubMed ID: 14690442 [TBL] [Abstract][Full Text] [Related]
13. Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products. Bruns CM; Hubatsch I; Ridderström M; Mannervik B; Tainer JA J Mol Biol; 1999 May; 288(3):427-39. PubMed ID: 10329152 [TBL] [Abstract][Full Text] [Related]
14. Evidence for an essential serine residue in the active site of the Theta class glutathione transferases. Board PG; Coggan M; Wilce MC; Parker MW Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):247-50. PubMed ID: 7575461 [TBL] [Abstract][Full Text] [Related]
15. Shifting substrate specificity of human glutathione transferase (from class Pi to class alpha) by a single point mutation. Nuccetelli M; Mazzetti AP; Rossjohn J; Parker MW; Board P; Caccuri AM; Federici G; Ricci G; Lo Bello M Biochem Biophys Res Commun; 1998 Nov; 252(1):184-9. PubMed ID: 9813167 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme. Lo Bello M; Oakley AJ; Battistoni A; Mazzetti AP; Nuccetelli M; Mazzarese G; Rossjohn J; Parker MW; Ricci G Biochemistry; 1997 May; 36(20):6207-17. PubMed ID: 9166793 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism and role of hydroxyl residues in the active site of theta class glutathione S-transferases. Investigation of Ser-9 and Tyr-113 in a glutathione S-transferase from the Australian sheep blowfly, Lucilia cuprina. Caccuri AM; Antonini G; Nicotra M; Battistoni A; Lo Bello M; Board PG; Parker MW; Ricci G J Biol Chem; 1997 Nov; 272(47):29681-6. PubMed ID: 9368035 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for catalytic differences between alpha class human glutathione transferases hGSTA1-1 and hGSTA2-2 for glutathione conjugation of environmental carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide. Singh SV; Varma V; Zimniak P; Srivastava SK; Marynowski SW; Desai D; Amin S; Ji X Biochemistry; 2004 Aug; 43(30):9708-15. PubMed ID: 15274625 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning and site-directed mutagenesis of glutathione S-transferase from Escherichia coli. The conserved tyrosyl residue near the N terminus is not essential for catalysis. Nishida M; Kong KH; Inoue H; Takahashi K J Biol Chem; 1994 Dec; 269(51):32536-41. PubMed ID: 7798255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]