These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 19596613)
1. Localization of X-ray cross complementing gene 1 protein in the nuclear matrix is controlled by casein kinase II-dependent phosphorylation in response to oxidative damage. Kubota Y; Takanami T; Higashitani A; Horiuchi S DNA Repair (Amst); 2009 Aug; 8(8):953-60. PubMed ID: 19596613 [TBL] [Abstract][Full Text] [Related]
2. SNF2H interacts with XRCC1 and is involved in repair of H2O2-induced DNA damage. Kubota Y; Shimizu S; Yasuhira S; Horiuchi S DNA Repair (Amst); 2016 Jul; 43():69-77. PubMed ID: 27268481 [TBL] [Abstract][Full Text] [Related]
3. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. Ström CE; Mortusewicz O; Finch D; Parsons JL; Lagerqvist A; Johansson F; Schultz N; Erixon K; Dianov GL; Helleday T DNA Repair (Amst); 2011 Sep; 10(9):961-9. PubMed ID: 21840775 [TBL] [Abstract][Full Text] [Related]
4. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Masson M; Niedergang C; Schreiber V; Muller S; Menissier-de Murcia J; de Murcia G Mol Cell Biol; 1998 Jun; 18(6):3563-71. PubMed ID: 9584196 [TBL] [Abstract][Full Text] [Related]
5. XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair. Parsons JL; Dianova II; Finch D; Tait PS; Ström CE; Helleday T; Dianov GL DNA Repair (Amst); 2010 Jul; 9(7):835-41. PubMed ID: 20471329 [TBL] [Abstract][Full Text] [Related]
6. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. El-Khamisy SF; Masutani M; Suzuki H; Caldecott KW Nucleic Acids Res; 2003 Oct; 31(19):5526-33. PubMed ID: 14500814 [TBL] [Abstract][Full Text] [Related]
7. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage. Hanssen-Bauer A; Solvang-Garten K; Sundheim O; Peña-Diaz J; Andersen S; Slupphaug G; Krokan HE; Wilson DM; Akbari M; Otterlei M Environ Mol Mutagen; 2011 Oct; 52(8):623-35. PubMed ID: 21786338 [TBL] [Abstract][Full Text] [Related]
8. Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Campalans A; Kortulewski T; Amouroux R; Menoni H; Vermeulen W; Radicella JP Nucleic Acids Res; 2013 Mar; 41(5):3115-29. PubMed ID: 23355608 [TBL] [Abstract][Full Text] [Related]
9. Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses. Horton JK; Stefanick DF; Gassman NR; Williams JG; Gabel SA; Cuneo MJ; Prasad R; Kedar PS; Derose EF; Hou EW; London RE; Wilson SH DNA Repair (Amst); 2013 Sep; 12(9):774-85. PubMed ID: 23871146 [TBL] [Abstract][Full Text] [Related]
10. The region of XRCC1 which harbours the three most common nonsynonymous polymorphic variants, is essential for the scaffolding function of XRCC1. Hanssen-Bauer A; Solvang-Garten K; Gilljam KM; Torseth K; Wilson DM; Akbari M; Otterlei M DNA Repair (Amst); 2012 Apr; 11(4):357-66. PubMed ID: 22281126 [TBL] [Abstract][Full Text] [Related]
11. Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose). Wei L; Nakajima S; Hsieh CL; Kanno S; Masutani M; Levine AS; Yasui A; Lan L J Cell Sci; 2013 Oct; 126(Pt 19):4414-23. PubMed ID: 23868975 [TBL] [Abstract][Full Text] [Related]
12. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Godon C; Cordelières FP; Biard D; Giocanti N; Mégnin-Chanet F; Hall J; Favaudon V Nucleic Acids Res; 2008 Aug; 36(13):4454-64. PubMed ID: 18603595 [TBL] [Abstract][Full Text] [Related]
14. A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment. Luo H; Chan DW; Yang T; Rodriguez M; Chen BP; Leng M; Mu JJ; Chen D; Songyang Z; Wang Y; Qin J Mol Cell Biol; 2004 Oct; 24(19):8356-65. PubMed ID: 15367657 [TBL] [Abstract][Full Text] [Related]
15. XRCC1-mediated repair of strand breaks independent of PNKP binding. Horton JK; Stefanick DF; Zhao ML; Janoshazi AK; Gassman NR; Seddon HJ; Wilson SH DNA Repair (Amst); 2017 Dec; 60():52-63. PubMed ID: 29100039 [TBL] [Abstract][Full Text] [Related]
16. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Breslin C; Hornyak P; Ridley A; Rulten SL; Hanzlikova H; Oliver AW; Caldecott KW Nucleic Acids Res; 2015 Aug; 43(14):6934-44. PubMed ID: 26130715 [TBL] [Abstract][Full Text] [Related]
19. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. Schreiber V; Amé JC; Dollé P; Schultz I; Rinaldi B; Fraulob V; Ménissier-de Murcia J; de Murcia G J Biol Chem; 2002 Jun; 277(25):23028-36. PubMed ID: 11948190 [TBL] [Abstract][Full Text] [Related]
20. DNA 3'-phosphatase activity is critical for rapid global rates of single-strand break repair following oxidative stress. Breslin C; Caldecott KW Mol Cell Biol; 2009 Sep; 29(17):4653-62. PubMed ID: 19546231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]