These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 19596632)
1. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Feng G; Huang GB; Lin Q; Gay R IEEE Trans Neural Netw; 2009 Aug; 20(8):1352-7. PubMed ID: 19596632 [TBL] [Abstract][Full Text] [Related]
2. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. Zhang R; Lan Y; Huang GB; Xu ZB IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):365-71. PubMed ID: 24808516 [TBL] [Abstract][Full Text] [Related]
3. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT; Won Y; Kim JJ Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [TBL] [Abstract][Full Text] [Related]
4. Bidirectional extreme learning machine for regression problem and its learning effectiveness. Yang Y; Wang Y; Yuan X IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1498-505. PubMed ID: 24807932 [TBL] [Abstract][Full Text] [Related]
5. Dynamic extreme learning machine and its approximation capability. Zhang R; Lan Y; Huang GB; Xu ZB; Soh YC IEEE Trans Cybern; 2013 Dec; 43(6):2054-65. PubMed ID: 23757515 [TBL] [Abstract][Full Text] [Related]
6. A fast and accurate online sequential learning algorithm for feedforward networks. Liang NY; Huang GB; Saratchandran P; Sundararajan N IEEE Trans Neural Netw; 2006 Nov; 17(6):1411-23. PubMed ID: 17131657 [TBL] [Abstract][Full Text] [Related]
7. Sparse Bayesian extreme learning machine for multi-classification. Luo J; Vong CM; Wong PK IEEE Trans Neural Netw Learn Syst; 2014 Apr; 25(4):836-43. PubMed ID: 24807961 [TBL] [Abstract][Full Text] [Related]
8. Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks. Romero E; Alquézar R Neural Netw; 2012 Jan; 25(1):122-9. PubMed ID: 21959130 [TBL] [Abstract][Full Text] [Related]
9. A novel multiple instance learning method based on extreme learning machine. Wang J; Cai L; Peng J; Jia Y Comput Intell Neurosci; 2015; 2015():405890. PubMed ID: 25705220 [TBL] [Abstract][Full Text] [Related]
10. Is extreme learning machine feasible? A theoretical assessment (part I). Liu X; Lin S; Fang J; Xu Z IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):7-20. PubMed ID: 25069126 [TBL] [Abstract][Full Text] [Related]
12. Constructive approximation to multivariate function by decay RBF neural network. Hou M; Han X IEEE Trans Neural Netw; 2010 Sep; 21(9):1517-23. PubMed ID: 20693108 [TBL] [Abstract][Full Text] [Related]
13. A new Jacobian matrix for optimal learning of single-layer neural networks. Peng JX; Li K; Irwin GW IEEE Trans Neural Netw; 2008 Jan; 19(1):119-29. PubMed ID: 18269943 [TBL] [Abstract][Full Text] [Related]
14. Extreme learning machine for regression and multiclass classification. Huang GB; Zhou H; Ding X; Zhang R IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):513-29. PubMed ID: 21984515 [TBL] [Abstract][Full Text] [Related]
15. Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. Teoh EJ; Tan KC; Xiang C IEEE Trans Neural Netw; 2006 Nov; 17(6):1623-9. PubMed ID: 17131674 [TBL] [Abstract][Full Text] [Related]
16. Single-hidden-layer feed-forward quantum neural network based on Grover learning. Liu CY; Chen C; Chang CT; Shih LM Neural Netw; 2013 Sep; 45():144-50. PubMed ID: 23545155 [TBL] [Abstract][Full Text] [Related]
17. Is extreme learning machine feasible? A theoretical assessment (part II). Lin S; Liu X; Fang J; Xu Z IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):21-34. PubMed ID: 25069128 [TBL] [Abstract][Full Text] [Related]
18. A hybrid ART-GRNN online learning neural network with a epsilon -insensitive loss function. Yap KS; Lim CP; Abidin IZ IEEE Trans Neural Netw; 2008 Sep; 19(9):1641-6. PubMed ID: 18779094 [TBL] [Abstract][Full Text] [Related]