These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 1959672)
1. The 65-kDa protein from pig heart. A new substrate for Clostridium botulinum ADP-ribosyltransferase (exoenzyme C3). Hoffenberg SI; Rybin VO; Efimenko AN; Kurochkin IN; Tkachuk VA FEBS Lett; 1991 Nov; 293(1-2):59-61. PubMed ID: 1959672 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. Just I; Mohr C; Schallehn G; Menard L; Didsbury JR; Vandekerckhove J; van Damme J; Aktories K J Biol Chem; 1992 May; 267(15):10274-80. PubMed ID: 1587816 [TBL] [Abstract][Full Text] [Related]
3. ADP-ribosylation and de-ADP-ribosylation of the rho protein by Clostridium botulinum exoenzyme C3. Regulation by EDTA, guanine nucleotides and pH. Habermann B; Mohr C; Just I; Aktories K Biochim Biophys Acta; 1991 Apr; 1077(3):253-8. PubMed ID: 1827595 [TBL] [Abstract][Full Text] [Related]
4. Separation of the 24 kDa substrate for botulinum C3 ADP-ribosyltransferase and the cholera toxin ADP-ribosylation factor. Tsai SC; Adamik R; Moss J; Aktories K Biochem Biophys Res Commun; 1988 May; 152(3):957-61. PubMed ID: 3132159 [TBL] [Abstract][Full Text] [Related]
5. Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Rubin EJ; Gill DM; Boquet P; Popoff MR Mol Cell Biol; 1988 Jan; 8(1):418-26. PubMed ID: 3122025 [TBL] [Abstract][Full Text] [Related]
6. Guanine nucleotide-dependent ADP-ribosylation of soluble rho catalyzed by Clostridium botulinum C3 ADP-ribosyltransferase. Isolation and characterization of a newly recognized form of rhoA. Williamson KC; Smith LA; Moss J; Vaughan M J Biol Chem; 1990 Dec; 265(34):20807-12. PubMed ID: 2174426 [TBL] [Abstract][Full Text] [Related]
7. Botulinum ADP-ribosyltransferase activity as affected by detergents and phospholipids. Maehama T; Ohoka Y; Ohtsuka T; Takahashi K; Nagata K; Nozawa Y; Ueno K; Ui M; Katada T FEBS Lett; 1990 Apr; 263(2):376-80. PubMed ID: 2110536 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
9. ADP-ribosylation by Clostridium botulinum C3 exoenzyme increases steady-state GTPase activities of recombinant rhoA and rhoB proteins. Mohr C; Koch G; Just I; Aktories K FEBS Lett; 1992 Feb; 297(1-2):95-9. PubMed ID: 1551445 [TBL] [Abstract][Full Text] [Related]
10. Changes in ADP-ribosylation of rho-related protein by exoenzyme C3 from Clostridium botulinum with maturation in rat testis. Kurokawa T; Yamashita A; Sato E; Goto M; Ishibashi S Biochem Int; 1992 Sep; 27(6):1067-71. PubMed ID: 1445375 [TBL] [Abstract][Full Text] [Related]
11. Preparation of native and recombinant Clostridium botulinum C3 ADP-ribosyltransferase and identification of Rho proteins by ADP-ribosylation. Morii N; Narumiya S Methods Enzymol; 1995; 256():196-206. PubMed ID: 7476433 [No Abstract] [Full Text] [Related]
12. Role of guanine nucleotide-binding proteins in Clostridium botulinum pathology: purification of substrates for Clostridium botulinum C3 ADP-ribosyltransferase with different requirements for GTP and phospholipids. Williamson KC; Smith LA; Moss J; Vaughan M Trans Assoc Am Physicians; 1990; 103():281-8. PubMed ID: 2132538 [No Abstract] [Full Text] [Related]
14. Characterization of a neutralizing monoclonal antibody against botulinum ADP-ribosyltransferase, C3 exoenzyme. Kamata Y; Hoshi H; Choki H; Kozaki S J Vet Med Sci; 2002 Sep; 64(9):767-71. PubMed ID: 12399599 [TBL] [Abstract][Full Text] [Related]
15. ADP-ribosylation of small GTP-binding proteins by Bacillus cereus. Just I; Schallehn G; Aktories K Biochem Biophys Res Commun; 1992 Mar; 183(3):931-6. PubMed ID: 1567406 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of Clostridium botulinum C3-catalysed ADP-ribosylation of recombinant rhoA by sodium dodecyl sulfate. Just I; Mohr C; Habermann B; Koch G; Aktories K Biochem Pharmacol; 1993 Apr; 45(7):1409-16. PubMed ID: 8385945 [TBL] [Abstract][Full Text] [Related]
17. Characterization of botulinum C3-catalyzed ADP-ribosylation of rho proteins and identification of mammalian C3-like ADP-ribosyltransferase. Maehama T; Sekine N; Nishina H; Takahashi K; Katada T Mol Cell Biochem; 1994 Sep; 138(1-2):135-40. PubMed ID: 7898456 [TBL] [Abstract][Full Text] [Related]
18. ADP-ribosylation of the rho/rac gene products by botulinum ADP-ribosyltransferase: identity of the enzyme and effects on protein and cell functions. Narumiya S; Morii N; Sekine A; Kozaki S J Physiol (Paris); 1990; 84(4):267-72. PubMed ID: 2127805 [TBL] [Abstract][Full Text] [Related]
19. Production of monoclonal antibodies that inhibit ADP-ribosylation of small GTP-binding proteins catalyzed by Clostridium botulinum ADP-ribosyltransferase C3. Toratani S; Sekine N; Katada T; Yokosawa H FEBS Lett; 1993 Jun; 324(3):353-7. PubMed ID: 8405381 [TBL] [Abstract][Full Text] [Related]
20. The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. Chardin P; Boquet P; Madaule P; Popoff MR; Rubin EJ; Gill DM EMBO J; 1989 Apr; 8(4):1087-92. PubMed ID: 2501082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]