BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 19596791)

  • 21. Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in
    Ostrow AZ; Kalhor R; Gan Y; Villwock SK; Linke C; Barberis M; Chen L; Aparicio OM
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):E2411-E2419. PubMed ID: 28265091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown.
    Andreeva N; Ledova L; Ryasanova L; Kulakovskaya T; Eldarov M
    Folia Microbiol (Praha); 2019 Nov; 64(6):867-873. PubMed ID: 30937822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85.
    Kaffman A; Herskowitz I; Tjian R; O'Shea EK
    Science; 1994 Feb; 263(5150):1153-6. PubMed ID: 8108735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New roles of DNA-binding and forkhead-associated domains of Fkh1 and Fkh2 in cellular functions.
    Zhou H; Shi BJ
    Cell Biochem Funct; 2022 Dec; 40(8):888-902. PubMed ID: 36121195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth.
    Zhu G; Spellman PT; Volpe T; Brown PO; Botstein D; Davis TN; Futcher B
    Nature; 2000 Jul; 406(6791):90-4. PubMed ID: 10894548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo.
    Ertel F; Dirac-Svejstrup AB; Hertel CB; Blaschke D; Svejstrup JQ; Korber P
    Mol Cell Biol; 2010 Aug; 30(16):4060-76. PubMed ID: 20566699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An in vitro system recapitulates chromatin remodeling at the PHO5 promoter.
    Haswell ES; O'Shea EK
    Mol Cell Biol; 1999 Apr; 19(4):2817-27. PubMed ID: 10082547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions.
    Vogel K; Hörz W; Hinnen A
    Mol Cell Biol; 1989 May; 9(5):2050-7. PubMed ID: 2664469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics.
    Ostrow AZ; Nellimoottil T; Knott SR; Fox CA; Tavaré S; Aparicio OM
    PLoS One; 2014; 9(2):e87647. PubMed ID: 24504085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forkhead transcription factor Fkh1: insights into functional regulatory domains crucial for recruitment of Sin3 histone deacetylase complex.
    Aref R; Sanad MNME; Schüller HJ
    Curr Genet; 2021 Jun; 67(3):487-499. PubMed ID: 33635403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.
    Hirst K; Fisher F; McAndrew PC; Goding CR
    EMBO J; 1994 Nov; 13(22):5410-20. PubMed ID: 7957107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo.
    Barbaric S; Luckenbach T; Schmid A; Blaschke D; Hörz W; Korber P
    J Biol Chem; 2007 Sep; 282(38):27610-21. PubMed ID: 17631505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the yeast transcriptional factor PHO2 activity by phosphorylation.
    Liu C; Yang Z; Yang J; Xia Z; Ao S
    J Biol Chem; 2000 Oct; 275(41):31972-8. PubMed ID: 10884387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ste12 and Mcm1 regulate cell cycle-dependent transcription of FAR1.
    Oehlen LJ; McKinney JD; Cross FR
    Mol Cell Biol; 1996 Jun; 16(6):2830-7. PubMed ID: 8649392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the ECB binding complex responsible for the M/G(1)-specific transcription of CLN3 and SWI4.
    Mai B; Miles S; Breeden LL
    Mol Cell Biol; 2002 Jan; 22(2):430-41. PubMed ID: 11756540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NDD1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae.
    Loy CJ; Lydall D; Surana U
    Mol Cell Biol; 1999 May; 19(5):3312-27. PubMed ID: 10207056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation.
    Ransom M; Williams SK; Dechassa ML; Das C; Linger J; Adkins M; Liu C; Bartholomew B; Tyler JK
    J Biol Chem; 2009 Aug; 284(35):23461-71. PubMed ID: 19574230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae.
    Knott SR; Peace JM; Ostrow AZ; Gan Y; Rex AE; Viggiani CJ; Tavaré S; Aparicio OM
    Cell; 2012 Jan; 148(1-2):99-111. PubMed ID: 22265405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes.
    Adkins MW; Howar SR; Tyler JK
    Mol Cell; 2004 Jun; 14(5):657-66. PubMed ID: 15175160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The essential transcription factor Reb1p interacts with the CLB2 UAS outside of the G2/M control region.
    Van Slyke C; Grayhack EJ
    Nucleic Acids Res; 2003 Aug; 31(15):4597-607. PubMed ID: 12888520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.