BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 19597792)

  • 1. Pathway and network analysis with high-density allelic association data.
    Torkamani A; Schork NJ
    Methods Mol Biol; 2009; 563():289-301. PubMed ID: 19597792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using genome-wide pathway analysis to unravel the etiology of complex diseases.
    Elbers CC; van Eijk KR; Franke L; Mulder F; van der Schouw YT; Wijmenga C; Onland-Moret NC
    Genet Epidemiol; 2009 Jul; 33(5):419-31. PubMed ID: 19235186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GSEA-SNP: applying gene set enrichment analysis to SNP data from genome-wide association studies.
    Holden M; Deng S; Wojnowski L; Kulle B
    Bioinformatics; 2008 Dec; 24(23):2784-5. PubMed ID: 18854360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. METU-SNP: an integrated software system for SNP-complex disease association analysis.
    Ustünkar G; Aydın Son Y
    J Integr Bioinform; 2011 Dec; 8(1):187. PubMed ID: 22156365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking free from the chains of pathway annotation: de novo pathway discovery for the analysis of disease processes.
    Lehne B; Schlitt T
    Pharmacogenomics; 2012 Dec; 13(16):1967-78. PubMed ID: 23215889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INTERSNP: genome-wide interaction analysis guided by a priori information.
    Herold C; Steffens M; Brockschmidt FF; Baur MP; Becker T
    Bioinformatics; 2009 Dec; 25(24):3275-81. PubMed ID: 19837719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying SNP targeted pathways in partial epilepsies with genome-wide association study data.
    Bakir-Gungor B; Baykan B; Ugur İseri S; Tuncer FN; Sezerman OU
    Epilepsy Res; 2013 Jul; 105(1-2):92-102. PubMed ID: 23498093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNPpath: characterizing cattle SNPs by enriched pathway terms.
    Wang Q; Wang M; Yang Y; Pan Y
    Anim Sci J; 2012 Apr; 83(4):279-83. PubMed ID: 22515686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating domain knowledge with statistical and data mining methods for high-density genomic SNP disease association analysis.
    Dinu V; Zhao H; Miller PL
    J Biomed Inform; 2007 Dec; 40(6):750-60. PubMed ID: 17625973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DigiPINS: a database for vertebrate exonic single nucleotide polymorphisms and its application to cancer association studies.
    Navratil V; Penel S; Delmotte S; Mouchiroud D; Gautier C; Aouacheria A
    Biochimie; 2008 Apr; 90(4):563-9. PubMed ID: 17988782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted SNP genotyping using the TaqMan® assay.
    Schleinitz D; Distefano JK; Kovacs P
    Methods Mol Biol; 2011; 700():77-87. PubMed ID: 21204028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying disease related sub-pathways for analysis of genome-wide association studies.
    Li C; Han J; Shang D; Li J; Wang Y; Wang Y; Zhang Y; Yao Q; Zhang C; Li K; Li X
    Gene; 2012 Jul; 503(1):101-9. PubMed ID: 22565193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analysis of heterogeneous data sources for genome-scale identification of risk genes in complex phenotypes.
    Pers TH; Hansen NT; Lage K; Koefoed P; Dworzynski P; Miller ML; Flint TJ; Mellerup E; Dam H; Andreassen OA; Djurovic S; Melle I; Børglum AD; Werge T; Purcell S; Ferreira MA; Kouskoumvekaki I; Workman CT; Hansen T; Mors O; Brunak S
    Genet Epidemiol; 2011 Jul; 35(5):318-32. PubMed ID: 21484861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Providing context and interpretability to genetic association analysis results using the KGraph.
    Kelly RJ; Smith JA; Kardia SL
    Adv Genet; 2010; 72():181-93. PubMed ID: 21029853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing the "next generation" of genetic association databases for complex diseases.
    Lill CM; Bertram L
    Hum Mutat; 2012 Sep; 33(9):1366-72. PubMed ID: 22752977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the current top candidate genes for AD in a genome-wide association study.
    Feulner TM; Laws SM; Friedrich P; Wagenpfeil S; Wurst SH; Riehle C; Kuhn KA; Krawczak M; Schreiber S; Nikolaus S; Förstl H; Kurz A; Riemenschneider M
    Mol Psychiatry; 2010 Jul; 15(7):756-66. PubMed ID: 19125160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autosome-wide copy number variation association analysis for rheumatoid arthritis using the WTCCC high-density SNP genotype data.
    Uddin M; Sturge M; Rahman P; Woods MO
    J Rheumatol; 2011 May; 38(5):797-801. PubMed ID: 21362769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics 100 for cardiologists: basics of genome-wide association studies.
    Dubé JB; Hegele RA
    Can J Cardiol; 2013 Jan; 29(1):10-7. PubMed ID: 23200095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based interpretation of genomic variation data.
    Halldórsson BV; Sharan R
    J Mol Biol; 2013 Nov; 425(21):3964-9. PubMed ID: 23886866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.