These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19597866)

  • 1. Predicting sustained fire spread in Tasmanian native grasslands.
    Leonard S
    Environ Manage; 2009 Sep; 44(3):430-40. PubMed ID: 19597866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition.
    Santana VM; Marrs RH
    J Environ Manage; 2014 Jun; 139():88-96. PubMed ID: 24681648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the trade-off between fire and grazing in a tropical savanna landscape, northern Australia.
    Liedloff AC; Coughenour MB; Ludwig JA; Dyer R
    Environ Int; 2001 Sep; 27(2-3):173-80. PubMed ID: 11697666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk.
    Baeza MJ; De Luís M; Raventós J; Escarré A
    J Environ Manage; 2002 Jun; 65(2):199-208. PubMed ID: 12197080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population collapse and retreat to fire refugia of the Tasmanian endemic conifer Athrotaxis selaginoides following the transition from Aboriginal to European fire management.
    Holz A; Wood SW; Ward C; Veblen TT; Bowman DMJS
    Glob Chang Biol; 2020 May; 26(5):3108-3121. PubMed ID: 32125058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.
    Fuentes-Ramirez A; Veldman JW; Holzapfel C; Moloney KA
    Ecol Appl; 2016 Oct; 26(7):2311-2322. PubMed ID: 27755715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].
    Jin S; Liu BF; Di XY; Chu TF; Zhang JL
    Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):51-9. PubMed ID: 22489479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability in weather and site properties affect fuel and fire behavior following fuel treatments in semiarid sagebrush-steppe.
    Price SJ; Germino MJ
    J Environ Manage; 2024 Feb; 353():120154. PubMed ID: 38308992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved accuracy of wildfire simulations using fuel hazard estimates based on environmental data.
    Penman TD; McColl-Gausden SC; Cirulis BA; Kultaev D; Ababei DA; Bennett LT
    J Environ Manage; 2022 Jan; 301():113789. PubMed ID: 34592661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides.
    Holz A; Wood SW; Veblen TT; Bowman DM
    Glob Chang Biol; 2015 Jan; 21(1):445-58. PubMed ID: 25044347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that shrublands and hummock grasslands are fire-mediated alternative stable states in the Australian Gibson Desert.
    Wright BR
    Oecologia; 2018 Oct; 188(2):525-535. PubMed ID: 29974238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia.
    Price OF; Bradstock RA
    J Environ Manage; 2012 Dec; 113():146-57. PubMed ID: 23025983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adding fuel to the fire? Revegetation influences wildfire size and intensity.
    Collins L; Penman TD; Price OF; Bradstock RA
    J Environ Manage; 2015 Mar; 150():196-205. PubMed ID: 25500136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas.
    Santos ACD; Montenegro SDR; Ferreira MC; Barradas ACS; Schmidt IB
    J Environ Manage; 2021 Jul; 289():112508. PubMed ID: 33831763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].
    Zhang JL; Liu BF; Chu TF; Di XY; Jin S
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1495-502. PubMed ID: 22937636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting fire responses to climate and management: insights from two Australian ecosystems.
    King KJ; Cary GJ; Bradstock RA; Marsden-Smedley JB
    Glob Chang Biol; 2013 Apr; 19(4):1223-35. PubMed ID: 23504898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.
    Elia M; Lafortezza R; Lovreglio R; Sanesi G
    Environ Manage; 2015 Sep; 56(3):754-64. PubMed ID: 25962800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fire, fuel composition and resilience threshold in subalpine ecosystem.
    Blarquez O; Carcaillet C
    PLoS One; 2010 Aug; 5(8):e12480. PubMed ID: 20814580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management.
    Curt T; Borgniet L; Bouillon C
    J Environ Manage; 2013 Mar; 117():150-61. PubMed ID: 23369835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-scale variation in fuel loads differentially affects two co-dominant bunchgrasses in a species-rich pine savanna.
    Gagnon PR; Harms KE; Platt WJ; Passmore HA; Myers JA
    PLoS One; 2012; 7(1):e29674. PubMed ID: 22272241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.