These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19597943)

  • 1. A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints.
    Shi L; Traaseth NJ; Verardi R; Cembran A; Gao J; Veglia G
    J Biomol NMR; 2009 Aug; 44(4):195-205. PubMed ID: 19597943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state NMR structures of integral membrane proteins.
    Patching SG
    Mol Membr Biol; 2015; 32(5-8):156-78. PubMed ID: 26857803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach.
    Traaseth NJ; Shi L; Verardi R; Mullen DG; Barany G; Veglia G
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10165-70. PubMed ID: 19509339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.
    Mote KR; Gopinath T; Traaseth NJ; Kitchen J; Gor'kov PL; Brey WW; Veglia G
    J Biomol NMR; 2011 Nov; 51(3):339-46. PubMed ID: 21976256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-State NMR of Membrane Proteins in Lipid Bilayers: To Spin or Not To Spin?
    Gopinath T; Weber D; Wang S; Larsen E; Veglia G
    Acc Chem Res; 2021 Mar; 54(6):1430-1439. PubMed ID: 33655754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic refinement with correlated solid-state NMR restraints.
    Bertram R; Asbury T; Fabiola F; Quine JR; Cross TA; Chapman MS
    J Magn Reson; 2003 Aug; 163(2):300-9. PubMed ID: 12914845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure determination of membrane proteins by NMR spectroscopy.
    Opella SJ; Nevzorov A; Mesleh MF; Marassi FM
    Biochem Cell Biol; 2002; 80(5):597-604. PubMed ID: 12440700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane protein structure and dynamics from NMR spectroscopy.
    Hong M; Zhang Y; Hu F
    Annu Rev Phys Chem; 2012; 63():1-24. PubMed ID: 22136620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of helical membrane protein topology using residual dipolar couplings and exhaustive search algorithm: application to phospholamban.
    Mascioni A; Eggimann BL; Veglia G
    Chem Phys Lipids; 2004 Nov; 132(1):133-44. PubMed ID: 15530454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.
    Tian Y; Schwieters CD; Opella SJ; Marassi FM
    J Biomol NMR; 2017 Jan; 67(1):35-49. PubMed ID: 28035651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state NMR and membrane proteins.
    Opella SJ
    J Magn Reson; 2015 Apr; 253():129-37. PubMed ID: 25681966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR "Crystallography" for Uniformly (
    Awosanya EO; Lapin J; Nevzorov AA
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3554-3557. PubMed ID: 31887238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy.
    Mote KR; Gopinath T; Veglia G
    J Biomol NMR; 2013 Oct; 57(2):91-102. PubMed ID: 23963722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints.
    Gabel F; Simon B; Nilges M; Petoukhov M; Svergun D; Sattler M
    J Biomol NMR; 2008 Aug; 41(4):199-208. PubMed ID: 18670889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paramagnetism-based restraints for Xplor-NIH.
    Banci L; Bertini I; Cavallaro G; Giachetti A; Luchinat C; Parigi G
    J Biomol NMR; 2004 Mar; 28(3):249-61. PubMed ID: 14752258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta.
    Lapin J; Nevzorov AA
    J Biomol NMR; 2019 May; 73(5):229-244. PubMed ID: 31076969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.
    Lu GJ; Son WS; Opella SJ
    J Magn Reson; 2011 Apr; 209(2):195-206. PubMed ID: 21316275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins.
    Shi L; Traaseth NJ; Verardi R; Gustavsson M; Gao J; Veglia G
    J Am Chem Soc; 2011 Feb; 133(7):2232-41. PubMed ID: 21287984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing excited states and activation energy for the integral membrane protein phospholamban by NMR CPMG relaxation dispersion experiments.
    Traaseth NJ; Veglia G
    Biochim Biophys Acta; 2010 Feb; 1798(2):77-81. PubMed ID: 19781521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.