These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19598185)

  • 1. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila.
    Reimer D; Luxenburger E; Brachmann AO; Bode HB
    Chembiochem; 2009 Aug; 10(12):1997-2001. PubMed ID: 19598185
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila.
    Park D; Ciezki K; van der Hoeven R; Singh S; Reimer D; Bode HB; Forst S
    Mol Microbiol; 2009 Sep; 73(5):938-49. PubMed ID: 19682255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila.
    Guo S; Zhang S; Fang X; Liu Q; Gao J; Bilal M; Wang Y; Zhang X
    Microb Cell Fact; 2017 Nov; 16(1):203. PubMed ID: 29141647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophila.
    Zhang S; Fang X; Tang Q; Ge J; Wang Y; Zhang X
    Microbiologyopen; 2019 Feb; 8(2):e00674. PubMed ID: 29888873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A natural prodrug activation mechanism in nonribosomal peptide synthesis.
    Reimer D; Pos KM; Thines M; GrĂ¼n P; Bode HB
    Nat Chem Biol; 2011 Sep; 7(12):888-90. PubMed ID: 21926994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenorhabdus khoisanae SB10 produces Lys-rich PAX lipopeptides and a Xenocoumacin in its antimicrobial complex.
    Dreyer J; Rautenbach M; Booysen E; van Staden AD; Deane SM; Dicks LMT
    BMC Microbiol; 2019 Jun; 19(1):132. PubMed ID: 31195965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology.
    Wang YH; Feng JT; Zhang Q; Zhang X
    J Appl Microbiol; 2008 Mar; 104(3):735-44. PubMed ID: 17953686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophila.
    Guo S; Wang Z; Liu B; Gao J; Fang X; Tang Q; Bilal M; Wang Y; Zhang X
    Microb Biotechnol; 2019 May; 12(3):447-458. PubMed ID: 30623566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila.
    Fuchs SW; Proschak A; Jaskolla TW; Karas M; Bode HB
    Org Biomol Chem; 2011 May; 9(9):3130-2. PubMed ID: 21423922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process.
    Han Y; Zhang S; Wang Y; Gao J; Han J; Yan Z; Ta Y; Wang Y
    Sci Rep; 2024 Jun; 14(1):13506. PubMed ID: 38866882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the Production of Xenocoumacin 1 in
    Qin Y; Jia F; Zheng X; Li X; Duan J; Li B; Shen H; Yang X; Ren J; Li G
    J Agric Food Chem; 2023 Jun; 71(23):8959-8968. PubMed ID: 37278378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization.
    Martens EC; Russell FM; Goodrich-Blair H
    Mol Microbiol; 2005 Oct; 58(1):28-45. PubMed ID: 16164547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis.
    Goodrich-Blair H
    Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review.
    Booysen E; Dicks LMT
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1310-1320. PubMed ID: 32844362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila.
    Eom S; Park Y; Kim Y
    J Microbiol; 2014 Feb; 52(2):161-8. PubMed ID: 24500481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage.
    Mahar AN; Al-Siyabi AA; Elawad SA; Hague NG; Gowen SR
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):233-8. PubMed ID: 17390798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus.
    Lang G; Kalvelage T; Peters A; Wiese J; Imhoff JF
    J Nat Prod; 2008 Jun; 71(6):1074-7. PubMed ID: 18491867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xenortide Biosynthesis by Entomopathogenic Xenorhabdus nematophila.
    Reimer D; Nollmann FI; Schultz K; Kaiser M; Bode HB
    J Nat Prod; 2014 Aug; 77(8):1976-80. PubMed ID: 25080196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and biosynthesis of deoxy-polyamine in Xenorhabdus bovienii.
    Wenski SL; Berghaus N; Keller N; Bode HB
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33693901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of pH shift to enhance the growth and antibiotic activity of Xenorhabdus nematophila.
    Wang Y; Fang X; Cheng Y; Zhang X
    J Biomed Biotechnol; 2011; 2011():672369. PubMed ID: 21660139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.