BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19598204)

  • 1. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique.
    Vrana NE; O'Grady A; Kay E; Cahill PA; McGuinness GB
    J Tissue Eng Regen Med; 2009 Oct; 3(7):567-72. PubMed ID: 19598204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers.
    Cho SH; Lim SM; Han DK; Yuk SH; Im GI; Lee JH
    J Biomater Sci Polym Ed; 2009; 20(7-8):863-76. PubMed ID: 19454157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell encapsulation and cryostorage in PVA-gelatin cryogels: incorporation of carboxylated ε-poly-L-lysine as cryoprotectant.
    Vrana NE; Matsumura K; Hyon SH; Geever LM; Kennedy JE; Lyons JG; Higginbotham CL; Cahill PA; McGuinness GB
    J Tissue Eng Regen Med; 2012 Apr; 6(4):280-90. PubMed ID: 21706775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of novel physically cross-linked hydrogels composed of poly(vinyl alcohol) and amine-terminated polyamidoamine dendrimer.
    Wu XY; Huang SW; Zhang JT; Zhuo RX
    Macromol Biosci; 2004 Feb; 4(2):71-5. PubMed ID: 15468196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility.
    Liu Y; Vrana NE; Cahill PA; McGuinness GB
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):492-502. PubMed ID: 19145629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas.
    Qi M; Gu Y; Sakata N; Kim D; Shirouzu Y; Yamamoto C; Hiura A; Sumi S; Inoue K
    Biomaterials; 2004 Dec; 25(27):5885-92. PubMed ID: 15172501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-step protocol to incorporate cells in thermoresponsive hydrogels.
    Sawant PD; Achuth HN; Moochhala SM
    Biotechnol J; 2006 Apr; 1(4):462-5. PubMed ID: 16892274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis.
    Yar M; Shahzad S; Siddiqi SA; Mahmood N; Rauf A; Anwar MS; Chaudhry AA; Rehman Iu
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():154-64. PubMed ID: 26249576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility.
    Lv Q; Hu K; Feng Q; Cui F
    J Biomed Mater Res A; 2008 Jan; 84(1):198-207. PubMed ID: 17607763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.
    Sannino A; Netti PA; Madaghiele M; Coccoli V; Luciani A; Maffezzoli A; Nicolais L
    J Biomed Mater Res A; 2006 Nov; 79(2):229-36. PubMed ID: 16752396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement.
    Holloway JL; Lowman AM; Palmese GR
    Acta Biomater; 2010 Dec; 6(12):4716-24. PubMed ID: 20601243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Porous polyvinyl alcohol hydrogel composite prepared and studied initially for biocompatibility].
    Wu JQ; Liu Y; Yang TF; Mu YH; Guo T; Li YB
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Jul; 38(4):705-8, 724. PubMed ID: 17718447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety.
    Konno T; Ishihara K
    Biomaterials; 2007 Apr; 28(10):1770-7. PubMed ID: 17215037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PVA hydrogel properties for biomedical application.
    Jiang S; Liu S; Feng W
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1228-33. PubMed ID: 21783131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels.
    Mawad D; Martens PJ; Odell RA; Poole-Warren LA
    Biomaterials; 2007 Feb; 28(6):947-55. PubMed ID: 17084445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form.
    Xu Y; Jang K; Konno T; Ishihara K; Mawatari K; Kitamori T
    Biomaterials; 2010 Dec; 31(34):8839-46. PubMed ID: 20732713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.