These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 1959862)
21. Expression of pancreatic trypsinogen/trypsin and cathepsin B in human cholangiocarcinomas and hepatocellular carcinomas. Terada T; Ohta T; Minato H; Nakanuma Y Hum Pathol; 1995 Jul; 26(7):746-52. PubMed ID: 7628846 [TBL] [Abstract][Full Text] [Related]
22. Lectin binding of intrahepatic bile ducts and peribiliary glands in normal livers and hepatolithiasis. Saito K; Nakanuma Y Tohoku J Exp Med; 1990 Jan; 160(1):81-92. PubMed ID: 2330582 [TBL] [Abstract][Full Text] [Related]
23. Abnormal expression of MUC1 apomucin and mature MUC1 mucin in biliary epithelial cells in various cystic liver diseases. Sasaki M; Nakanuma Y Hepatology; 1996 Sep; 24(3):539-43. PubMed ID: 8781320 [TBL] [Abstract][Full Text] [Related]
24. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. Carpino G; Cardinale V; Renzi A; Hov JR; Berloco PB; Rossi M; Karlsen TH; Alvaro D; Gaudio E J Hepatol; 2015 Nov; 63(5):1220-8. PubMed ID: 26119688 [TBL] [Abstract][Full Text] [Related]
25. Intrahepatic bile duct development in the rat: a cytokeratin-immunohistochemical study. Van Eyken P; Sciot R; Desmet V Lab Invest; 1988 Jul; 59(1):52-9. PubMed ID: 2455831 [TBL] [Abstract][Full Text] [Related]
26. Expression of co-stimulatory factor B7-2 on the intrahepatic bile ducts in primary biliary cirrhosis and primary sclerosing cholangitis: an immunohistochemical study. Tsuneyama K; Harada K; Yasoshima M; Kaji K; Gershwin ME; Nakanuma Y J Pathol; 1998 Oct; 186(2):126-30. PubMed ID: 9924426 [TBL] [Abstract][Full Text] [Related]
27. An immunohistochemical profile of the so-called bile duct adenoma: clues to pathogenesis. Hughes NR; Goodman ZD; Bhathal PS Am J Surg Pathol; 2010 Sep; 34(9):1312-8. PubMed ID: 20679879 [TBL] [Abstract][Full Text] [Related]
28. Pancreatic mass, cellularity, and alpha-amylase and trypsin activity in feedlot steers fed diets differing in crude protein concentration. Swanson KC; Kelly N; Salim H; Wang YJ; Holligan S; Fan MZ; McBride BW J Anim Sci; 2008 Apr; 86(4):909-15. PubMed ID: 18192547 [TBL] [Abstract][Full Text] [Related]
29. Biliary epithelial expression of MUC1, MUC2, MUC3 and MUC5/6 apomucins during intrahepatic bile duct development and maturation. An immunohistochemical study. Sasaki M; Nakanuma Y; Terada T; Kim YS Am J Pathol; 1995 Sep; 147(3):574-9. PubMed ID: 7677170 [TBL] [Abstract][Full Text] [Related]
30. Expression of matrix proteinases during human intrahepatic bile duct development. A possible role in biliary cell migration. Terada T; Okada Y; Nakanuma Y Am J Pathol; 1995 Nov; 147(5):1207-13. PubMed ID: 7485384 [TBL] [Abstract][Full Text] [Related]
31. Profiles of expression of carbohydrate chain structures during human intrahepatic bile duct development and maturation: a lectin-histochemical and immunohistochemical study. Terada T; Nakanuma Y Hepatology; 1994 Aug; 20(2):388-97. PubMed ID: 8045500 [TBL] [Abstract][Full Text] [Related]
32. Protein expression of double-stranded RNA-activated protein kinase (PKR) in intrahepatic bile ducts in normal adult livers, fetal livers, primary biliary cirrhosis, hepatolithiasis and intrahepatic cholangiocarcinoma. Terada T; Ueyama J; Ukita Y; Ohta T Liver; 2000 Dec; 20(6):450-7. PubMed ID: 11169059 [TBL] [Abstract][Full Text] [Related]
33. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Isse K; Harada K; Zen Y; Kamihira T; Shimoda S; Harada M; Nakanuma Y Hepatology; 2005 Mar; 41(3):506-16. PubMed ID: 15726664 [TBL] [Abstract][Full Text] [Related]
34. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. Carpino G; Cardinale V; Onori P; Franchitto A; Berloco PB; Rossi M; Wang Y; Semeraro R; Anceschi M; Brunelli R; Alvaro D; Reid LM; Gaudio E J Anat; 2012 Feb; 220(2):186-99. PubMed ID: 22136171 [TBL] [Abstract][Full Text] [Related]
35. Multipotent stem cells in the biliary tree. Cardinale V; Wang Y; Carpino G; Alvaro D; Reid L; Gaudio E Ital J Anat Embryol; 2010; 115(1-2):85-90. PubMed ID: 21072995 [TBL] [Abstract][Full Text] [Related]
36. Osteopontin Expression in Patients with Hepatolith. Kim BS; Joo SH; Lim SJ; Joo KR Indian J Surg; 2015 Dec; 77(Suppl 2):551-6. PubMed ID: 26730063 [TBL] [Abstract][Full Text] [Related]
37. Pathological observations of intrahepatic peribiliary glands in 1,000 consecutive autopsy livers. III. Survey of necroinflammation and cystic dilatation. Terada T; Nakanuma Y Hepatology; 1990 Nov; 12(5):1229-33. PubMed ID: 1699863 [TBL] [Abstract][Full Text] [Related]
38. Aberrant bile ducts, 'remnant surface bile ducts,' and peribiliary glands: descriptive anatomy, historical nomenclature, and surgical implications. El Gharbawy RM; Skandalakis LJ; Heffron TG; Skandalakis JE Clin Anat; 2011 May; 24(4):429-40. PubMed ID: 21218436 [TBL] [Abstract][Full Text] [Related]
39. Participation of peribiliary glands in biliary tract pathophysiologies. Igarashi S; Sato Y; Ren XS; Harada K; Sasaki M; Nakanuma Y World J Hepatol; 2013 Aug; 5(8):425-32. PubMed ID: 24023981 [TBL] [Abstract][Full Text] [Related]
40. The so-called bile duct adenoma is a peribiliary gland hamartoma. Bhathal PS; Hughes NR; Goodman ZD Am J Surg Pathol; 1996 Jul; 20(7):858-64. PubMed ID: 8669534 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]