BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 19601593)

  • 1. Ternary complexes of iron, amyloid-beta, and nitrilotriacetic acid: binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer's disease.
    Jiang D; Li X; Williams R; Patel S; Men L; Wang Y; Zhou F
    Biochemistry; 2009 Aug; 48(33):7939-47. PubMed ID: 19601593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance.
    Jiang D; Men L; Wang J; Zhang Y; Chickenyen S; Wang Y; Zhou F
    Biochemistry; 2007 Aug; 46(32):9270-82. PubMed ID: 17636872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ongoing search for small molecules to study metal-associated amyloid-β species in Alzheimer's disease.
    Savelieff MG; DeToma AS; Derrick JS; Lim MH
    Acc Chem Res; 2014 Aug; 47(8):2475-82. PubMed ID: 25080056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of alpha-synuclein with Fe(III) and with Fe(II) and biological implications of the resultant complexes.
    Peng Y; Wang C; Xu HH; Liu YN; Zhou F
    J Inorg Biochem; 2010 Apr; 104(4):365-70. PubMed ID: 20005574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction rates and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(II)-containing amyloid-beta complexes and aggregates.
    Jiang D; Li X; Liu L; Yagnik GB; Zhou F
    J Phys Chem B; 2010 Apr; 114(14):4896-903. PubMed ID: 20302320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-active metals, oxidative stress, and Alzheimer's disease pathology.
    Huang X; Moir RD; Tanzi RE; Bush AI; Rogers JT
    Ann N Y Acad Sci; 2004 Mar; 1012():153-63. PubMed ID: 15105262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide β-amyloid (1-42).
    Everett J; Céspedes E; Shelford LR; Exley C; Collingwood JF; Dobson J; van der Laan G; Jenkins CA; Arenholz E; Telling ND
    J R Soc Interface; 2014 Jun; 11(95):20140165. PubMed ID: 24671940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox chemistry of the Alzheimer's disease amyloid beta peptide.
    Smith DG; Cappai R; Barnham KJ
    Biochim Biophys Acta; 2007 Aug; 1768(8):1976-90. PubMed ID: 17433250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals.
    Nadal RC; Rigby SE; Viles JH
    Biochemistry; 2008 Nov; 47(44):11653-64. PubMed ID: 18847222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The initial stage of structural transformation of Aβ
    Vahed M; Sweeney A; Shirasawa H; Vahed M
    Comput Biol Chem; 2019 Dec; 83():107128. PubMed ID: 31585353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles.
    Faller P; Hureau C; La Penna G
    Acc Chem Res; 2014 Aug; 47(8):2252-9. PubMed ID: 24871565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral analysis of Fe(III)-complex reduction by hemoglobin: possible mechanisms of interaction.
    Harrington JP; Hicks RL
    Int J Biochem; 1994 Sep; 26(9):1111-7. PubMed ID: 7988735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper and heme-mediated Abeta toxicity: redox chemistry, Abeta oxidations and anti-ROS compounds.
    Chassaing S; Collin F; Dorlet P; Gout J; Hureau C; Faller P
    Curr Top Med Chem; 2012; 12(22):2573-95. PubMed ID: 23339309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach.
    Deo RP; Rittmann BE; Reed DT
    Biodegradation; 2011 Sep; 22(5):921-9. PubMed ID: 21234648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer's disease peptide β-amyloid.
    Everett J; Céspedes E; Shelford LR; Exley C; Collingwood JF; Dobson J; van der Laan G; Jenkins CA; Arenholz E; Telling ND
    Inorg Chem; 2014 Mar; 53(6):2803-9. PubMed ID: 24559299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper mediates dityrosine cross-linking of Alzheimer's amyloid-beta.
    Atwood CS; Perry G; Zeng H; Kato Y; Jones WD; Ling KQ; Huang X; Moir RD; Wang D; Sayre LM; Smith MA; Chen SG; Bush AI
    Biochemistry; 2004 Jan; 43(2):560-8. PubMed ID: 14717612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanisms of the oxidation of myoglobin by Fe(III) and Cu(II) complexes.
    Hegetschweiler K; Saltman P; Dalvit C; Wright PE
    Biochim Biophys Acta; 1987 Apr; 912(3):384-97. PubMed ID: 3567208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper(II) binding to amyloid-beta fibrils of Alzheimer's disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Abeta oligomeric form.
    Sarell CJ; Syme CD; Rigby SE; Viles JH
    Biochemistry; 2009 May; 48(20):4388-402. PubMed ID: 19338344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodate modification of human serum transferrin Fe(III)-binding sites. Inhibition of carbonate insertion into Fe(III)- and Cu(II)-chelator-transferrin ternary complexes.
    Ross DC; Egan TJ; Purves LR
    J Biol Chem; 1995 May; 270(21):12404-10. PubMed ID: 7759481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.