BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19601610)

  • 1. Photobleaching of the "Raman spectroscopic signature of life" and mitochondrial activity in rho- budding yeast cells.
    Onogi C; Hamaguchi HO
    J Phys Chem B; 2009 Aug; 113(31):10942-5. PubMed ID: 19601610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behaviors of the "raman spectroscopic signature of life" in single living fission yeast cells under different nutrient, stress, and atmospheric conditions.
    Huang YS; Nakatsuka T; Hamaguchi HO
    Appl Spectrosc; 2007 Dec; 61(12):1290-4. PubMed ID: 18198019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy.
    Huang YS; Karashima T; Yamamoto M; Hamaguchi HO
    Biochemistry; 2005 Aug; 44(30):10009-19. PubMed ID: 16042377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The "Raman spectroscopic signature of life" is closely related to haem function in budding yeasts.
    Chiu LD; Hamaguchi HO
    J Biophotonics; 2011 Jan; 4(1-2):30-3. PubMed ID: 20391543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casting new physicochemical light on the fundamental biological processes in single living cells by using Raman microspectroscopy.
    Kaliaperumal V; Hamaguchi HO
    Chem Rec; 2012 Dec; 12(6):567-80. PubMed ID: 23129551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the origin of the 1602 cm-1 Raman band of yeasts; contribution of ergosterol.
    Chiu LD; Hullin-Matsuda F; Kobayashi T; Torii H; Hamaguchi HO
    J Biophotonics; 2012 Oct; 5(10):724-8. PubMed ID: 22529062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV near-resonance Raman spectroscopic study of 1,1'-bi-2-naphthol solutions.
    Li ZY; Chen DM; He TJ; Liu FC
    J Phys Chem A; 2007 Jun; 111(22):4767-75. PubMed ID: 17500545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy.
    Minogianni C; Gatos KG; Galiotis C
    Appl Spectrosc; 2005 Sep; 59(9):1141-7. PubMed ID: 18028610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV and VIS Raman spectra of natural lonsdaleites: towards a recognised standard.
    Smith DC; Godard G
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):428-35. PubMed ID: 19081292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach to correct variations in Raman spectra due to photo-bleachable cellular components.
    Scholtes-Timmerman M; Willemse-Erix H; Schut TB; van Belkum A; Puppels G; Maquelin K
    Analyst; 2009 Feb; 134(2):387-93. PubMed ID: 19173067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of single eukaryotic cells with micro-Raman spectroscopy.
    Rösch P; Harz M; Peschke KD; Ronneberger O; Burkhardt H; Popp J
    Biopolymers; 2006 Jul; 82(4):312-6. PubMed ID: 16421914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The luminescent carbon-bearing microinclusion enigma in the Kimi Unit, Rhodope, Greece: Raman microscopic point analyses and mapping with different lasers.
    Perraki M; Smith DC; Mposkos E
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1077-84. PubMed ID: 17851123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation-dependent phases of T cells distinguished by use of optical tweezers and near infrared Raman spectroscopy.
    Mannie MD; McConnell TJ; Xie C; Li YQ
    J Immunol Methods; 2005 Feb; 297(1-2):53-60. PubMed ID: 15777930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical correlation of Raman spectra of normal, benign and malignant breast tissues: a spectral deconvolution study.
    Chowdary MV; Kalyan Kumar K; Mathew S; Rao L; Krishna CM; Kurien J
    Biopolymers; 2009 Jul; 91(7):539-46. PubMed ID: 19226625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organelle specific simultaneous Raman/green fluorescence protein microspectroscopy for living cell physicochemical studies.
    Wattanavichean N; Nishida I; Ando M; Kawamukai M; Yamamoto T; Hamaguchi HO
    J Biophotonics; 2020 Apr; 13(4):e201960163. PubMed ID: 31990439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Raman spectroscopic investigation on the interactions between liver Cancer cells (SMMC-7721) and fufang Luxiancao particles].
    Zhang JY; Guo JY; Cai WY; Sun ZR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2574-8. PubMed ID: 19271493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for extracting biochemical information from bacterial Raman spectra: focus on a group of structurally similar biomolecules--fatty acids.
    De Gelder J; De Gussem K; Vandenabeele P; Vancanneyt M; De Vos P; Moens L
    Anal Chim Acta; 2007 Nov; 603(2):167-75. PubMed ID: 17963837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectral characterization of dispersed carbonaceous matter in decorative crystalline limestones.
    Jehlicka J; Stastná A; Prikryl R
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):404-9. PubMed ID: 19062335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy.
    Singh GP; Creely CM; Volpe G; Grötsch H; Petrov D
    Anal Chem; 2005 Apr; 77(8):2564-8. PubMed ID: 15828794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobleaching of the resonance Raman lines of cytochromes in living yeast cells.
    Okotrub KA; Surovtsev NV
    J Photochem Photobiol B; 2014 Dec; 141():269-74. PubMed ID: 25463677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.