These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19601679)

  • 1. Formation of protocell-like vesicles in a thermal diffusion column.
    Budin I; Bruckner RJ; Szostak JW
    J Am Chem Soc; 2009 Jul; 131(28):9628-9. PubMed ID: 19601679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions.
    Budin I; Prwyes N; Zhang N; Szostak JW
    Biophys J; 2014 Oct; 107(7):1582-90. PubMed ID: 25296310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes.
    Maurer SE; Deamer DW; Boncella JM; Monnard PA
    Astrobiology; 2009 Dec; 9(10):979-87. PubMed ID: 20041750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostability of model protocell membranes.
    Mansy SS; Szostak JW
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13351-5. PubMed ID: 18768808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prebiotic Protocell Membranes Retain Encapsulated Contents during Flocculation, and Phospholipids Preserve Encapsulation during Dehydration.
    Cohen ZR; Cornell CE; Catling DC; Black RA; Keller SL
    Langmuir; 2022 Jan; 38(3):1304-1310. PubMed ID: 35026114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prebiotic Vesicle Formation and the Necessity of Salts.
    Maurer SE; Nguyen G
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):215-22. PubMed ID: 26590931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration-driven growth of model protocell membranes.
    Budin I; Debnath A; Szostak JW
    J Am Chem Soc; 2012 Dec; 134(51):20812-9. PubMed ID: 23198690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of nucleolipids as possible activated precursors for oligomer formation via intramolecular catalysis: stability study and supramolecular organization.
    Gangadhara KL; Srivastava P; Rozenski J; Mattelaer HP; Leen V; Dehaen W; Hofkens J; Lescrinier E; Herdewijn P
    J Syst Chem; 2014; 5():5. PubMed ID: 25558290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Salts on Single Chain Amphiphile Membranes and Implications for the Location of the Origin of Life.
    Maurer S
    Life (Basel); 2017 Nov; 7(4):. PubMed ID: 29135960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life.
    Jordan SF; Rammu H; Zheludev IN; Hartley AM; Maréchal A; Lane N
    Nat Ecol Evol; 2019 Dec; 3(12):1705-1714. PubMed ID: 31686020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: unveiling the role of fatty acids as a model protocell membrane.
    Kundu N; Mondal D; Sarkar N
    Biophys Rev; 2020 Oct; 12(5):1117-1131. PubMed ID: 32926295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Chimeric Amino Acid-Fatty Alcohol Ester Amphiphiles Self-Assemble into Stable Primitive Membranes in Diverse Geological Settings.
    Namani T; Ruf RJ; Arsano I; Hu R; Wesdemiotis C; Sahai N
    Astrobiology; 2023 Mar; 23(3):327-343. PubMed ID: 36724479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model.
    Dora Tang TY; Rohaida Che Hak C; Thompson AJ; Kuimova MK; Williams DS; Perriman AW; Mann S
    Nat Chem; 2014 Jun; 6(6):527-33. PubMed ID: 24848239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle Self-Assembly of Monoalkyl Amphiphiles under the Effects of High Ionic Strength, Extreme pH, and High Temperature Environments.
    Maurer SE; Tølbøl Sørensen K; Iqbal Z; Nicholas J; Quirion K; Gioia M; Monnard PA; Hanczyc MM
    Langmuir; 2018 Dec; 34(50):15560-15568. PubMed ID: 30407827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto-Cellular Compartment.
    Kwiatkowski W; Bomba R; Afanasyev P; Boehringer D; Riek R; Greenwald J
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5561-5568. PubMed ID: 33325627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly.
    Sahai N; Kaddour H; Dalai P; Wang Z; Bass G; Gao M
    Sci Rep; 2017 Mar; 7():43418. PubMed ID: 28266537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators.
    Walde P; Umakoshi H; Stano P; Mavelli F
    Chem Commun (Camb); 2014 Sep; 50(71):10177-97. PubMed ID: 24921467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose Abetted Assembly and Temporally Decoupled Loading of Cargo into Vesicles Synthesized from Functionally Diverse Lamellar Phase Forming Amphiphiles.
    Li A; Pazzi J; Xu M; Subramaniam AB
    Biomacromolecules; 2018 Mar; 19(3):849-859. PubMed ID: 29465981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled growth and division of model protocell membranes.
    Zhu TF; Szostak JW
    J Am Chem Soc; 2009 Apr; 131(15):5705-13. PubMed ID: 19323552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Nonconventional Model of Protocell-like Vesicles: Anionic Clay Surface-Mediated Formation from a Single-Tailed Amphiphile.
    Du N; Song R; Li H; Song S; Zhang R; Hou W
    Langmuir; 2015 Nov; 31(46):12579-86. PubMed ID: 26524569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.