These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Anderson DG; Levenberg S; Langer R Nat Biotechnol; 2004 Jul; 22(7):863-6. PubMed ID: 15195101 [TBL] [Abstract][Full Text] [Related]
4. High throughput strategies for the design, discovery, and analysis of biomaterials. Kilian KA; Moghe PV Acta Biomater; 2016 Apr; 34():v-vi. PubMed ID: 27018334 [No Abstract] [Full Text] [Related]
5. A new approach to the rationale discovery of polymeric biomaterials. Kohn J; Welsh WJ; Knight D Biomaterials; 2007 Oct; 28(29):4171-7. PubMed ID: 17644176 [TBL] [Abstract][Full Text] [Related]
6. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering. Groen N; Guvendiren M; Rabitz H; Welsh WJ; Kohn J; de Boer J Acta Biomater; 2016 Apr; 34():133-142. PubMed ID: 26876875 [TBL] [Abstract][Full Text] [Related]
7. Cell interactions with biomaterials gradients and arrays. Simon CG; Yang Y; Thomas V; Dorsey SM; Morgan AW Comb Chem High Throughput Screen; 2009 Jul; 12(6):544-53. PubMed ID: 19601752 [TBL] [Abstract][Full Text] [Related]
8. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis. Zhang D; Lee J; Kilian KA Adv Healthc Mater; 2017 Oct; 6(19):. PubMed ID: 28841770 [TBL] [Abstract][Full Text] [Related]
9. Combinatorial and high-throughput screening of materials libraries: review of state of the art. Potyrailo R; Rajan K; Stoewe K; Takeuchi I; Chisholm B; Lam H ACS Comb Sci; 2011 Nov; 13(6):579-633. PubMed ID: 21644562 [TBL] [Abstract][Full Text] [Related]
10. High-throughput screening of cell responses to biomaterials. Yliperttula M; Chung BG; Navaladi A; Manbachi A; Urtti A Eur J Pharm Sci; 2008 Oct; 35(3):151-60. PubMed ID: 18586092 [TBL] [Abstract][Full Text] [Related]
11. High-throughput and combinatorial technologies for tissue engineering applications. Peters A; Brey DM; Burdick JA Tissue Eng Part B Rev; 2009 Sep; 15(3):225-39. PubMed ID: 19290801 [TBL] [Abstract][Full Text] [Related]
12. New approaches to biomaterials design. Kohn J Nat Mater; 2004 Nov; 3(11):745-7. PubMed ID: 15516948 [TBL] [Abstract][Full Text] [Related]
13. Reducing nanotube cytotoxicity using a nano-combinatorial library approach. Zhang Q; Zhou H; Yan B Methods Mol Biol; 2010; 625():95-107. PubMed ID: 20422384 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Nakajima M; Ishimuro T; Kato K; Ko IK; Hirata I; Arima Y; Iwata H Biomaterials; 2007 Feb; 28(6):1048-60. PubMed ID: 17081602 [TBL] [Abstract][Full Text] [Related]
15. High-efficiency combinatorial approach as an effective tool for accelerating metallic biomaterials research and discovery. Zhang XD; Liu LB; Zhao JC; Wang JL; Zheng F; Jin ZP Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():273-80. PubMed ID: 24863225 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of combinatorial polymer scaffold libraries. Simon CG; Stephens JS; Dorsey SM; Becker ML Rev Sci Instrum; 2007 Jul; 78(7):072207. PubMed ID: 17672738 [TBL] [Abstract][Full Text] [Related]
17. Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Zapata P; Su J; GarcĂa AJ; Meredith JC Biomacromolecules; 2007 Jun; 8(6):1907-17. PubMed ID: 17506518 [TBL] [Abstract][Full Text] [Related]