These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
709 related articles for article (PubMed ID: 19601957)
21. Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria. Singh BK; Tate KR; Kolipaka G; Hedley CB; Macdonald CA; Millard P; Murrell JC Appl Environ Microbiol; 2007 Aug; 73(16):5153-61. PubMed ID: 17574997 [TBL] [Abstract][Full Text] [Related]
22. Improved method for detection of methanotrophic bacteria in forest soils by PCR. Steinkamp R; Zimmer W; Papen H Curr Microbiol; 2001 May; 42(5):316-22. PubMed ID: 11400051 [TBL] [Abstract][Full Text] [Related]
23. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. Freitag TE; Toet S; Ineson P; Prosser JI FEMS Microbiol Ecol; 2010 Jul; 73(1):157-65. PubMed ID: 20455935 [TBL] [Abstract][Full Text] [Related]
24. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Boyle-Yarwood SA; Bottomley PJ; Myrold DD Environ Microbiol; 2008 Nov; 10(11):2956-65. PubMed ID: 18393992 [TBL] [Abstract][Full Text] [Related]
25. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. Shrestha M; Shrestha PM; Frenzel P; Conrad R ISME J; 2010 Dec; 4(12):1545-56. PubMed ID: 20596069 [TBL] [Abstract][Full Text] [Related]
26. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Dunfield PF; Yuryev A; Senin P; Smirnova AV; Stott MB; Hou S; Ly B; Saw JH; Zhou Z; Ren Y; Wang J; Mountain BW; Crowe MA; Weatherby TM; Bodelier PL; Liesack W; Feng L; Wang L; Alam M Nature; 2007 Dec; 450(7171):879-82. PubMed ID: 18004300 [TBL] [Abstract][Full Text] [Related]
27. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Chen Y; Dumont MG; McNamara NP; Chamberlain PM; Bodrossy L; Stralis-Pavese N; Murrell JC Environ Microbiol; 2008 Feb; 10(2):446-59. PubMed ID: 18093158 [TBL] [Abstract][Full Text] [Related]
28. Identification of the bacterial community involved in methane-dependent denitrification in activated sludge using DNA stable-isotope probing. Osaka T; Ebie Y; Tsuneda S; Inamori Y FEMS Microbiol Ecol; 2008 Jun; 64(3):494-506. PubMed ID: 18459970 [TBL] [Abstract][Full Text] [Related]
29. Community analysis of methanogenic archaea within a riparian flooding gradient. Kemnitz D; Chin KJ; Bodelier P; Conrad R Environ Microbiol; 2004 May; 6(5):449-61. PubMed ID: 15049918 [TBL] [Abstract][Full Text] [Related]
30. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Chen Y; Dumont MG; Cébron A; Murrell JC Environ Microbiol; 2007 Nov; 9(11):2855-69. PubMed ID: 17922768 [TBL] [Abstract][Full Text] [Related]
31. A novel pmoA lineage represented by the acidophilic methanotrophic bacterium Methylocapsa acidiphila [correction of acidophila] B2. Dedysh SN; Horz HP; Dunfield PF; Liesack W Arch Microbiol; 2001 Dec; 177(1):117-21. PubMed ID: 11797053 [TBL] [Abstract][Full Text] [Related]
32. Succession of methanotrophs in oxygen-methane counter-gradients of flooded rice paddies. Krause S; Lüke C; Frenzel P ISME J; 2010 Dec; 4(12):1603-7. PubMed ID: 20574459 [TBL] [Abstract][Full Text] [Related]
33. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487 [TBL] [Abstract][Full Text] [Related]
34. Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil. Gattinger A; Höfle MG; Schloter M; Embacher A; Böhme F; Munch JC; Labrenz M Environ Microbiol; 2007 Mar; 9(3):612-24. PubMed ID: 17298362 [TBL] [Abstract][Full Text] [Related]
35. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. Zhang LM; Wang M; Prosser JI; Zheng YM; He JZ FEMS Microbiol Ecol; 2009 Nov; 70(2):52-61. PubMed ID: 19780828 [TBL] [Abstract][Full Text] [Related]
36. [Methanotrophic communities in the soils of Russian northern taiga and subarctic tundra]. Kaliuzhnaia MG; Makutina VA; Rusakova TG; Nikitin DV; Khmelenina VN; Dmitriev VV; Trotsenko IuA Mikrobiologiia; 2002; 71(2):264-71. PubMed ID: 12024830 [TBL] [Abstract][Full Text] [Related]
37. A methane-driven microbial food web in a wetland rice soil. Murase J; Frenzel P Environ Microbiol; 2007 Dec; 9(12):3025-34. PubMed ID: 17991031 [TBL] [Abstract][Full Text] [Related]
38. Links between methanotroph community composition and CH oxidation in a pine forest soil. Bengtson P; Basiliko N; Dumont MG; Hills M; Murrell JC; Roy R; Grayston SJ FEMS Microbiol Ecol; 2009 Dec; 70(3):356-66. PubMed ID: 19811539 [TBL] [Abstract][Full Text] [Related]
39. Diversity and activity of methanotrophic bacteria in different upland soils. Knief C; Lipski A; Dunfield PF Appl Environ Microbiol; 2003 Nov; 69(11):6703-14. PubMed ID: 14602631 [TBL] [Abstract][Full Text] [Related]
40. Methanotrophy below pH 1 by a new Verrucomicrobia species. Pol A; Heijmans K; Harhangi HR; Tedesco D; Jetten MS; Op den Camp HJ Nature; 2007 Dec; 450(7171):874-8. PubMed ID: 18004305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]