These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19602865)

  • 21. The emerging roles of microRNAs in the molecular responses of metabolic rate depression.
    Biggar KK; Storey KB
    J Mol Cell Biol; 2011 Jun; 3(3):167-75. PubMed ID: 21177365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic rate depression in animals: transcriptional and translational controls.
    Storey KB; Storey JM
    Biol Rev Camb Philos Soc; 2004 Feb; 79(1):207-33. PubMed ID: 15005178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies of biochemical adaptation for hibernation in a South American marsupial, Dromiciops gliroides: 2. Control of the Akt pathway and protein translation machinery.
    Luu BE; Wijenayake S; Zhang J; Tessier SN; Quintero-Galvis JF; Gaitán-Espitia JD; Nespolo RF; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():19-25. PubMed ID: 29247846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of skeletal muscle creatine kinase from a hibernating mammal.
    Abnous K; Storey KB
    Arch Biochem Biophys; 2007 Nov; 467(1):10-9. PubMed ID: 17888865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. p38 MAPK regulation of transcription factor targets in muscle and heart of the hibernating bat, Myotis lucifugus.
    Eddy SF; Storey KB
    Cell Biochem Funct; 2007; 25(6):759-65. PubMed ID: 17487931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible depression of transcription during hibernation.
    van Breukelen F; Martin SL
    J Comp Physiol B; 2002 Jul; 172(5):355-61. PubMed ID: 12122451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Torpor and digestion in food-storing hibernators.
    Humphries MM; Thomas DW; Kramer DL
    Physiol Biochem Zool; 2001; 74(2):283-92. PubMed ID: 11247747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?
    Van Breukelen F; Martin SL
    J Appl Physiol (1985); 2002 Jun; 92(6):2640-7. PubMed ID: 12015384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Akt phosphorylation and kinase activity are down-regulated during hibernation in the 13-lined ground squirrel.
    Cai D; McCarron RM; Yu EZ; Li Y; Hallenbeck J
    Brain Res; 2004 Jul; 1014(1-2):14-21. PubMed ID: 15212987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of hypometabolism: insights into epigenetic controls.
    Storey KB
    J Exp Biol; 2015 Jan; 218(Pt 1):150-9. PubMed ID: 25568462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic regulation in mammalian hibernation: enzyme and protein adaptations.
    Storey KB
    Comp Biochem Physiol A Physiol; 1997 Dec; 118(4):1115-24. PubMed ID: 9505421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian hibernation: lessons for organ preparation?
    Green C
    Cryo Letters; 2000; 21(2):91-98. PubMed ID: 12148053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation.
    MacDonald JA; Storey KB
    Biochem Biophys Res Commun; 1999 Jan; 254(2):424-9. PubMed ID: 9918854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype.
    Lindell SL; Klahn SL; Piazza TM; Mangino MJ; Torrealba JR; Southard JH; Carey HV
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G473-80. PubMed ID: 15701622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs.
    Lang-Ouellette D; Richard TG; Morin P
    Biochemistry (Mosc); 2014 Nov; 79(11):1161-71. PubMed ID: 25540001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organ arrest, protection and preservation: natural hibernation to cardiac surgery.
    Dobson GP
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):469-85. PubMed ID: 15544969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple molecular mathematical model of mammalian hibernation.
    Hampton M; Andrews MT
    J Theor Biol; 2007 Jul; 247(2):297-302. PubMed ID: 17459419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia.
    Fähling M
    Acta Physiol (Oxf); 2009 Feb; 195(2):205-30. PubMed ID: 18764866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An energy-based body temperature threshold between torpor and normothermia for small mammals.
    Willis CK
    Physiol Biochem Zool; 2007; 80(6):643-51. PubMed ID: 17910000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.