BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19603074)

  • 1. Unscented Kalman filter for brain-machine interfaces.
    Li Z; O'Doherty JE; Hanson TL; Lebedev MA; Henriquez CS; Nicolelis MA
    PLoS One; 2009 Jul; 4(7):e6243. PubMed ID: 19603074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the non-stationary neuron tuning by dual Kalman filter for brain machine interfaces decoding.
    Wang Y; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1720-3. PubMed ID: 19163011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time decoding of nonstationary neural activity in motor cortex.
    Wu W; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):213-22. PubMed ID: 18586600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian population decoding of motor cortical activity using a Kalman filter.
    Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ
    Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Lower Limb Muscle Activity and Kinematics from Cortical Neural Spike Trains during Monkey Performing Stand and Squat Movements.
    Ma X; Ma C; Huang J; Zhang P; Xu J; He J
    Front Neurosci; 2017; 11():44. PubMed ID: 28223914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural control of finger movement via intracortical brain-machine interface.
    Irwin ZT; Schroeder KE; Vu PP; Bullard AJ; Tat DM; Nu CS; Vaskov A; Nason SR; Thompson DE; Bentley JN; Patil PG; Chestek CA
    J Neural Eng; 2017 Dec; 14(6):066004. PubMed ID: 28722685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intention Estimation Based Adaptive Unscented Kalman Filter for Online Neural Decoding.
    Ng HW; Premchand B; Toe KK; Libedinsky C; So RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5808-5811. PubMed ID: 34892440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-Machine Interface.
    Qi Y; Zhu X; Xu K; Ren F; Jiang H; Zhu J; Zhang J; Pan G; Wang Y
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3825-3835. PubMed ID: 35700258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brain-machine interface enables bimanual arm movements in monkeys.
    Ifft PJ; Shokur S; Li Z; Lebedev MA; Nicolelis MA
    Sci Transl Med; 2013 Nov; 5(210):210ra154. PubMed ID: 24197735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
    Vaskov AK; Irwin ZT; Nason SR; Vu PP; Nu CS; Bullard AJ; Hill M; North N; Patil PG; Chestek CA
    Front Neurosci; 2018; 12():751. PubMed ID: 30455621
    [No Abstract]   [Full Text] [Related]  

  • 15. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower-limb kinematic reconstruction during pedaling tasks from EEG signals using Unscented Kalman filter.
    Blanco-Díaz CF; Guerrero-Mendez CD; Delisle-Rodriguez D; de Souza AF; Badue C; Bastos-Filho TF
    Comput Methods Biomech Biomed Engin; 2024 May; 27(7):867-877. PubMed ID: 37129900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error detection and correction in intracortical brain-machine interfaces controlling two finger groups.
    Wallace DM; Benyamini M; Nason-Tomaszewski SR; Costello JT; Cubillos LH; Mender MJ; Temmar H; Willsey MS; Patil PG; Chestek CA; Zacksenhouse M
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37567222
    [No Abstract]   [Full Text] [Related]  

  • 19. Motor cortical control of movement speed with implications for brain-machine interface control.
    Golub MD; Yu BM; Schwartz AB; Chase SM
    J Neurophysiol; 2014 Jul; 112(2):411-29. PubMed ID: 24717350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-Loop Continuous Hand Control via Chronic Recording of Regenerative Peripheral Nerve Interfaces.
    Vu PP; Irwin ZT; Bullard AJ; Ambani SW; Sando IC; Urbanchek MG; Cederna PS; Chestek CA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):515-526. PubMed ID: 29432117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.