These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19603449)

  • 1. Bimetallic nickel-iron impurities within single-walled carbon nanotubes exhibit redox activity towards the oxidation of amino acids.
    Pumera M; Iwai H; Miyahara Y
    Chemphyschem; 2009 Aug; 10(11):1770-3. PubMed ID: 19603449
    [No Abstract]   [Full Text] [Related]  

  • 2. Redox-active nickel in carbon nanotubes and its direct determination.
    Ambrosi A; Pumera M
    Chemistry; 2012 Mar; 18(11):3338-44. PubMed ID: 22307929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties?
    Pumera M; Miyahara Y
    Nanoscale; 2009 Nov; 1(2):260-5. PubMed ID: 20644847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal transducers and enzyme cofactors are susceptible to oxidation by nanographite impurities in carbon nanotube materials.
    J E Stuart E; Pumera M
    Chemistry; 2011 May; 17(20):5544-8. PubMed ID: 21491519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical behavior of caffeic acid at single-walled carbon nanotube:graphite-based electrode.
    Moghaddam AB; Ganjali MR; Dinarvand R; Norouzi P; Saboury AA; Moosavi-Movahedi AA
    Biophys Chem; 2007 Jun; 128(1):30-7. PubMed ID: 17389147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic oxidation of DNA-wrapped carbon nanotubes.
    Napier ME; Hull DO; Thorp HH
    J Am Chem Soc; 2005 Aug; 127(34):11952-3. PubMed ID: 16117529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes.
    Pumera M; Iwai H
    Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device.
    Kang JH; Park JK
    Small; 2007 Oct; 3(10):1784-91. PubMed ID: 17890645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes.
    Kang X; Wang J; Tang Z; Wu H; Lin Y
    Talanta; 2009 Apr; 78(1):120-5. PubMed ID: 19174213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalysis of reduced L-glutathione oxidation by iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes.
    Luz RC; Damos FS; Tanaka AA; Kubota LT; Gushikem Y
    Talanta; 2008 Sep; 76(5):1097-104. PubMed ID: 18761161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry of myoglobin in Nafion and multi-walled carbon nanotubes modified carbon ionic liquid electrode.
    Sun W; Li X; Wang Y; Li X; Zhao C; Jiao K
    Bioelectrochemistry; 2009 Jun; 75(2):170-5. PubMed ID: 19394899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. alpha-Hydroxy and alpha-amino acids under possible Hadean, volcanic origin-of-life conditions.
    Huber C; Wächtershäuser G
    Science; 2006 Oct; 314(5799):630-2. PubMed ID: 17068257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane.
    Yang X; Yu H; Peng F; Wang H
    ChemSusChem; 2012 Jul; 5(7):1213-7. PubMed ID: 22488987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.
    Hegde RN; Hosamani RR; Nandibewoor ST
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):259-65. PubMed ID: 19446444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in single-walled carbon nanotube chirality during growth and regrowth.
    Zhu W; Rosén A; Bolton K
    J Chem Phys; 2008 Mar; 128(12):124708. PubMed ID: 18376961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures.
    Meng L; Jin J; Yang G; Lu T; Zhang H; Cai C
    Anal Chem; 2009 Sep; 81(17):7271-80. PubMed ID: 19715358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
    Gong M; Li Y; Wang H; Liang Y; Wu JZ; Zhou J; Wang J; Regier T; Wei F; Dai H
    J Am Chem Soc; 2013 Jun; 135(23):8452-5. PubMed ID: 23701670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst.
    Ouyang Y; Chen L; Liu QX; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphomolybdate-modified multi-walled carbon nanotubes as effective mediating systems for electrocatalytic reduction of bromate.
    Skunik M; Kulesza PJ
    Anal Chim Acta; 2009 Jan; 631(2):153-60. PubMed ID: 19084620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singling out the electrochemistry of individual single-walled carbon nanotubes in solution.
    Paolucci D; Franco MM; Iurlo M; Marcaccio M; Prato M; Zerbetto F; Pénicaud A; Paolucci F
    J Am Chem Soc; 2008 Jun; 130(23):7393-9. PubMed ID: 18479091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.