These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19603647)

  • 1. Spatial variability in mercury cycling and relevant biogeochemical controls in the Florida Everglades.
    Liu G; Cai Y; Mao Y; Scheidt D; Kalla P; Richards J; Scinto LJ; Tachiev G; Roelant D; Appleby C
    Environ Sci Technol; 2009 Jun; 43(12):4361-6. PubMed ID: 19603647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury mass budget estimates and cycling seasonality in the Florida Everglades.
    Liu G; Cai Y; Kalla P; Scheidt D; Richards J; Scinto LJ; Gaiser E; Appleby C
    Environ Sci Technol; 2008 Mar; 42(6):1954-60. PubMed ID: 18409620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periphyton as an important source of methylmercury in Everglades water and food web.
    Xiang Y; Liu G; Yin Y; Cai Y
    J Hazard Mater; 2021 May; 410():124551. PubMed ID: 33223320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periphyton and Flocculent Materials Are Important Ecological Compartments Supporting Abundant and Diverse Mercury Methylator Assemblages in the Florida Everglades.
    Bae HS; Dierberg FE; Ogram A
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31028023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades.
    Li Y; Mao Y; Liu G; Tachiev G; Roelant D; Feng X; Cai Y
    Environ Sci Technol; 2010 Sep; 44(17):6661-6. PubMed ID: 20701294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Legacy and fate of mercury and methylmercury in the Florida Everglades.
    Liu G; Naja GM; Kalla P; Scheidt D; Gaiser E; Cai Y
    Environ Sci Technol; 2011 Jan; 45(2):496-501. PubMed ID: 21158447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the major source and sink of methylmercury in the Florida Everglades.
    Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y
    Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury bioaccumulation and bioaccumulation factors for Everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013).
    Pollman CD; Axelrad DM
    Bull Environ Contam Toxicol; 2014 Nov; 93(5):509-16. PubMed ID: 25260994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decadal trends of mercury cycling and bioaccumulation within Everglades National Park.
    Janssen SE; Tate MT; Poulin BA; Krabbenhoft DP; DeWild JF; Ogorek JM; Varonka MS; Orem WH; Kline JL
    Sci Total Environ; 2022 Sep; 838(Pt 1):156031. PubMed ID: 35595135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat and dissolved organic carbon modulate variation in the biogeochemical drivers of mercury bioaccumulation in dragonfly larvae at the national scale.
    Nelson SJ; Willacker J; Eagles-Smith C; Flanagan Pritz C; Chen CY; Klemmer A; Krabbenhoft DP
    Sci Total Environ; 2024 Feb; 912():169396. PubMed ID: 38114036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe.
    Bravo AG; Kothawala DN; Attermeyer K; Tessier E; Bodmer P; Ledesma JLJ; Audet J; Casas-Ruiz JP; Catalán N; Cauvy-Fraunié S; Colls M; Deininger A; Evtimova VV; Fonvielle JA; Fuß T; Gilbert P; Herrero Ortega S; Liu L; Mendoza-Lera C; Monteiro J; Mor JR; Nagler M; Niedrist GH; Nydahl AC; Pastor A; Pegg J; Gutmann Roberts C; Pilotto F; Portela AP; González-Quijano CR; Romero F; Rulík M; Amouroux D
    Water Res; 2018 Nov; 144():172-182. PubMed ID: 30029076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of mercury and methylmercury bioaccumulation in earthworms (Bimastus parvus) native to landfill-leachate-contaminated forest soil.
    He C; Arizono K; Ji H; Yakushiji Y; Zhang D; Huang K; Ishibashi Y
    J Toxicol Sci; 2018; 43(7):459-471. PubMed ID: 29973478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury bioaccumulation in temperate forest food webs associated with headwater streams.
    Rodenhouse NL; Lowe WH; Gebauer RLE; McFarland KP; Bank MS
    Sci Total Environ; 2019 May; 665():1125-1134. PubMed ID: 30893744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada.
    Eagles-Smith CA; Ackerman JT; Willacker JJ; Tate MT; Lutz MA; Fleck JA; Stewart AR; Wiener JG; Evers DC; Lepak JM; Davis JA; Pritz CF
    Sci Total Environ; 2016 Oct; 568():1171-1184. PubMed ID: 27102274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal effects of interacting water quality constituents on mercury in a common prey fish in a large, perturbed, subtropical wetland.
    Kalla P; Cyterski M; Scheidt D; Minucci J
    Sci Total Environ; 2021 Oct; 792():148321. PubMed ID: 34153761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of total mercury concentrations in pig frogs (Rana grylio) across the Florida Everglades, USA.
    Ugarte CA; Rice KG; Donnelly MA
    Sci Total Environ; 2005 Jun; 345(1-3):51-9. PubMed ID: 15919527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish mercury and surface water sulfate relationships in the Everglades Protection Area.
    Gabriel MC; Howard N; Osborne TZ
    Environ Manage; 2014 Mar; 53(3):583-93. PubMed ID: 24385066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury cycling in aquatic ecosystems and trophic state-related variables--implications from structural equation modeling.
    Pollman CD
    Sci Total Environ; 2014 Nov; 499():62-73. PubMed ID: 25173863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating uptake and translocation of mercury species by sawgrass ( Cladium jamaicense ) using a stable isotope tracer technique.
    Mao Y; Li Y; Richards J; Cai Y
    Environ Sci Technol; 2013 Sep; 47(17):9678-84. PubMed ID: 23885899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.