These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
948 related articles for article (PubMed ID: 19603649)
1. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
2. Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition. Jia S; Dai X; Zhang D; Dai L; Wang R; Zhao J Water Res; 2013 Sep; 47(13):4576-84. PubMed ID: 23764607 [TBL] [Abstract][Full Text] [Related]
3. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion. Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505 [TBL] [Abstract][Full Text] [Related]
4. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis and acidification of waste activated sludge at different pHs. Chen Y; Jiang S; Yuan H; Zhou Q; Gu G Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541 [TBL] [Abstract][Full Text] [Related]
6. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
7. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH. Zhang P; Chen Y; Zhou Q Water Res; 2009 Aug; 43(15):3735-42. PubMed ID: 19555988 [TBL] [Abstract][Full Text] [Related]
8. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH? Ma H; Chen X; Liu H; Liu H; Fu B Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215 [TBL] [Abstract][Full Text] [Related]
9. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass. Huang J; Zhou R; Chen J; Han W; Chen Y; Wen Y; Tang J Bioresour Technol; 2016 Jul; 211():80-6. PubMed ID: 27003793 [TBL] [Abstract][Full Text] [Related]
10. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms. Su G; Wang S; Yuan Z; Peng Y J Biosci Bioeng; 2016 Mar; 121(3):293-8. PubMed ID: 26320405 [TBL] [Abstract][Full Text] [Related]
11. The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion. Gomec CY; Speece RE Water Sci Technol; 2003; 48(3):143-50. PubMed ID: 14518866 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Wang K; Yin J; Shen D; Li N Bioresour Technol; 2014 Jun; 161():395-401. PubMed ID: 24727700 [TBL] [Abstract][Full Text] [Related]
13. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses. Xie J; Duan X; Feng L; Yan Y; Wang F; Dong H; Jia R; Zhou Q Chemosphere; 2019 Mar; 219():305-312. PubMed ID: 30543966 [TBL] [Abstract][Full Text] [Related]
14. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. Lin L; Li XY Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135 [TBL] [Abstract][Full Text] [Related]
15. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge. Zeng RJ; Yuan Z; Keller J Water Sci Technol; 2006; 53(8):263-9. PubMed ID: 16784211 [TBL] [Abstract][Full Text] [Related]
16. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation. Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944 [TBL] [Abstract][Full Text] [Related]
17. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation. Wang B; Peng Y; Guo Y; Wang S J Biosci Bioeng; 2016 Apr; 121(4):431-4. PubMed ID: 26475401 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Chen Y; Li X; Zheng X; Wang D Water Res; 2013 Feb; 47(2):615-22. PubMed ID: 23219005 [TBL] [Abstract][Full Text] [Related]
19. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH. Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546 [TBL] [Abstract][Full Text] [Related]
20. Bisphenol A alters volatile fatty acids accumulation during sludge anaerobic fermentation by affecting amino acid metabolism, material transport and carbohydrate-active enzymes. Jiang X; Yan Y; Feng L; Wang F; Guo Y; Zhang X; Zhang Z Bioresour Technol; 2021 Mar; 323():124588. PubMed ID: 33383358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]