These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19603657)

  • 1. Ionic strength dependent transport of microparticles in saturated porous media: modeling mobilization and immobilization phenomena under transient chemical conditions.
    Tosco T; Tiraferri A; Sethi R
    Environ Sci Technol; 2009 Jun; 43(12):4425-31. PubMed ID: 19603657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloid mobilization in water-saturated porous media under transient chemical conditions.
    Lenhart JJ; Saiers JE
    Environ Sci Technol; 2003 Jun; 37(12):2780-7. PubMed ID: 12854719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media.
    Peng S; Wu D; Ge Z; Tong M; Kim H
    Environ Pollut; 2017 Jun; 225():141-149. PubMed ID: 28365511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.
    Li Z; Sahle-Demessie E; Hassan AA; Sorial GA
    Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical investigation of the effect of temporal variation in ionic strength on colloid retention and remobilization in saturated porous media.
    Krishna YSR; Seetha N; Hassanizadeh SM
    J Contam Hydrol; 2022 Dec; 251():104079. PubMed ID: 36155204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part II: transport experiments and modeling.
    Vitorge E; Szenknect S; Martins JM; Barthès V; Gaudet JP
    Environ Pollut; 2014 Jan; 184():613-9. PubMed ID: 24051031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media.
    Tian Y; Gao B; Wu L; Muñoz-Carpena R; Huang Q
    J Hazard Mater; 2012 Sep; 231-232():79-87. PubMed ID: 22776831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent agglomeration and straining govern the transport of
    Su Y; Gao B; Mao L
    Water Res; 2017 May; 115():84-93. PubMed ID: 28259817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry.
    He J; Wang D; Zhang W; Zhou D
    Chemosphere; 2019 Nov; 235():643-650. PubMed ID: 31276877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration.
    Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M
    Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale.
    Seetha N; Raoof A; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2017 May; 200():1-14. PubMed ID: 28366612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloid transport with wetting fronts: interactive effects of solution surface tension and ionic strength.
    Zhuang J; Goeppert N; Tu C; McCarthy J; Perfect E; McKay L
    Water Res; 2010 Feb; 44(4):1270-8. PubMed ID: 20056511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.