These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 19603664)
1. Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Gurska J; Wang W; Gerhardt KE; Khalid AM; Isherwood DM; Huang XD; Glick BR; Greenberg BM Environ Sci Technol; 2009 Jun; 43(12):4472-9. PubMed ID: 19603664 [TBL] [Abstract][Full Text] [Related]
2. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Xun F; Xie B; Liu S; Guo C Environ Sci Pollut Res Int; 2015 Jan; 22(1):598-608. PubMed ID: 25091168 [TBL] [Abstract][Full Text] [Related]
3. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Wang A; Fu W; Feng Y; Liu Z; Song D J Hazard Mater; 2022 May; 429():128396. PubMed ID: 35236043 [TBL] [Abstract][Full Text] [Related]
4. [Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil]. Arias-Trinidad A; Rivera-Cruz MC; Roldán-Garrigós A; Aceves-Navarro LA; Quintero-Lizaola R; Hernández-Guzmán J Rev Biol Trop; 2017 Mar; 65(1):21-30. PubMed ID: 29465955 [TBL] [Abstract][Full Text] [Related]
5. Petroleum-degrading microbial numbers in rhizosphere and non-rhizosphere crude oil-contaminated soil. Kirkpatrick WD; White PM; Wolf DC; Thoma GJ; Reynolds CM Int J Phytoremediation; 2008; 10(3):208-19. PubMed ID: 18710096 [TBL] [Abstract][Full Text] [Related]
6. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Hou J; Liu W; Wang B; Wang Q; Luo Y; Franks AE Chemosphere; 2015 Nov; 138():592-8. PubMed ID: 26210024 [TBL] [Abstract][Full Text] [Related]
7. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
8. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Huang XD; El-Alawi Y; Penrose DM; Glick BR; Greenberg BM Environ Pollut; 2004 Aug; 130(3):465-76. PubMed ID: 15182977 [TBL] [Abstract][Full Text] [Related]
10. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Martin BC; George SJ; Price CA; Ryan MH; Tibbett M Sci Total Environ; 2014 Feb; 472():642-53. PubMed ID: 24317170 [TBL] [Abstract][Full Text] [Related]
11. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil]. Jiao HH; Cui BJ; Wu SH; Bai ZH; Huang ZB Huan Jing Ke Xue; 2015 Sep; 36(9):3471-8. PubMed ID: 26717712 [TBL] [Abstract][Full Text] [Related]
12. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil. Shahsavari E; Adetutu EM; Anderson PA; Ball AS Sci Total Environ; 2013 Jan; 443():766-74. PubMed ID: 23231887 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of oil-sludge-contaminated soil. Muratova AY; Dmitrieva TV; Panchenko LV; Turkovskaya OV Int J Phytoremediation; 2008; 10(6):486-502. PubMed ID: 19260228 [TBL] [Abstract][Full Text] [Related]
14. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Euliss K; Ho CH; Schwab AP; Rock S; Banks MK Bioresour Technol; 2008 Apr; 99(6):1961-71. PubMed ID: 17531475 [TBL] [Abstract][Full Text] [Related]
15. Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation. Escobar-Alvarado LF; Vaca-Mier M; López R; Rojas-Valencia MN Bull Environ Contam Toxicol; 2018 Feb; 100(2):280-285. PubMed ID: 29188328 [TBL] [Abstract][Full Text] [Related]
16. Degradation of crude oil in the rhizosphere of Sorghum bicolor. Banks MK; Kulakow P; Schwab AP; Chen Z; Rathbone K Int J Phytoremediation; 2003; 5(3):225-34. PubMed ID: 14750430 [TBL] [Abstract][Full Text] [Related]
17. Remediation of petroleum contaminated soils through composting and rhizosphere degradation. Wang Z; Xu Y; Zhao J; Li F; Gao D; Xing B J Hazard Mater; 2011 Jun; 190(1-3):677-85. PubMed ID: 21524845 [TBL] [Abstract][Full Text] [Related]
18. Selecting plants and nitrogen rates to vegetate crude-oil-contaminated soil. Kirkpatrick WD; White PM; Wolf DC; Thoma GJ; Reynolds CM Int J Phytoremediation; 2006; 8(4):285-97. PubMed ID: 17305303 [TBL] [Abstract][Full Text] [Related]
19. Field note: phytoremediation of petroleum sludge contaminated field using sedge species, Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Basumatary B; Saikia R; Das HC; Bordoloi S Int J Phytoremediation; 2013; 15(9):877-88. PubMed ID: 23819282 [TBL] [Abstract][Full Text] [Related]
20. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. Cai Z; Zhou Q; Peng S; Li K J Hazard Mater; 2010 Nov; 183(1-3):731-7. PubMed ID: 20724074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]