BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19603745)

  • 1. A mechanism for incorporation of galectin-3 into the spliceosome through its association with U1 snRNP.
    Haudek KC; Voss PG; Locascio LE; Wang JL; Patterson RJ
    Biochemistry; 2009 Aug; 48(32):7705-12. PubMed ID: 19603745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 10S galectin-3-U1 snRNP complex assembles into active spliceosomes.
    Haudek KC; Voss PG; Wang JL; Patterson RJ
    Nucleic Acids Res; 2016 Jul; 44(13):6391-7. PubMed ID: 27105840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galectin-3-U1 snRNP Complexes Initiate Splicing Activity in U1-Depleted Nuclear Extracts.
    Voss PG; Haudek KC; Patterson RJ; Wang JL
    Methods Mol Biol; 2022; 2442():713-726. PubMed ID: 35320554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementation of Splicing Activity by a Galectin-3 - U1 snRNP Complex on Beads.
    Voss PG; Haudek KC; Patterson RJ; Wang JL
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33369604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiophosphorylation of U1-70K protein inhibits pre-mRNA splicing.
    Tazi J; Kornstädt U; Rossi F; Jeanteur P; Cathala G; Brunel C; Lührmann R
    Nature; 1993 May; 363(6426):283-6. PubMed ID: 8387646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel intra-U1 snRNP cross-regulation mechanism: alternative splicing switch links U1C and U1-70K expression.
    Rösel-Hillgärtner TD; Hung LH; Khrameeva E; Le Querrec P; Gelfand MS; Bindereif A
    PLoS Genet; 2013; 9(10):e1003856. PubMed ID: 24146627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the U1 small nuclear ribonucleoprotein during yeast spliceosome assembly.
    Ruby SW
    J Biol Chem; 1997 Jul; 272(28):17333-41. PubMed ID: 9211871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional spliceosomal A complexes can be assembled in vitro in the absence of a penta-snRNP.
    Behzadnia N; Hartmuth K; Will CL; Lührmann R
    RNA; 2006 Sep; 12(9):1738-46. PubMed ID: 16880538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative engagement and subsequent selective displacement of SR proteins define the pre-mRNA 3D structural scaffold for early spliceosome assembly.
    Saha K; Ghosh G
    Nucleic Acids Res; 2022 Aug; 50(14):8262-8278. PubMed ID: 35871302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly.
    Cho S; Hoang A; Sinha R; Zhong XY; Fu XD; Krainer AR; Ghosh G
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8233-8. PubMed ID: 21536904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP.
    Crispino JD; Blencowe BJ; Sharp PA
    Science; 1994 Sep; 265(5180):1866-9. PubMed ID: 8091213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The U1 snRNP base pairs with the 5' splice site within a penta-snRNP complex.
    Malca H; Shomron N; Ast G
    Mol Cell Biol; 2003 May; 23(10):3442-55. PubMed ID: 12724403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Sm core domain mediates targeting of U1 snRNP to subnuclear compartments involved in transcription and splicing.
    Malatesta M; Fakan S; Fischer U
    Exp Cell Res; 1999 Jun; 249(2):189-98. PubMed ID: 10366418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition and functional characterization of the yeast spliceosomal penta-snRNP.
    Stevens SW; Ryan DE; Ge HY; Moore RE; Young MK; Lee TD; Abelson J
    Mol Cell; 2002 Jan; 9(1):31-44. PubMed ID: 11804584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of the spliceosome.
    van der Feltz C; Anthony K; Brilot A; Pomeranz Krummel DA
    Biochemistry; 2012 Apr; 51(16):3321-33. PubMed ID: 22471593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly.
    Tardiff DF; Rosbash M
    RNA; 2006 Jun; 12(6):968-79. PubMed ID: 16618970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites.
    Hodson MJ; Hudson AJ; Cherny D; Eperon IC
    Nucleic Acids Res; 2012 Aug; 40(14):6850-62. PubMed ID: 22505580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes.
    Will CL; Rümpler S; Klein Gunnewiek J; van Venrooij WJ; Lührmann R
    Nucleic Acids Res; 1996 Dec; 24(23):4614-23. PubMed ID: 8972845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide RNA-binding analysis of the trypanosome U1 snRNP proteins U1C and U1-70K reveals cis/trans-spliceosomal network.
    Preußer C; Rossbach O; Hung LH; Li D; Bindereif A
    Nucleic Acids Res; 2014 Jun; 42(10):6603-15. PubMed ID: 24748659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic comparison of 5' splice site determination in central spliceosomal proteins of the U1-70K gene family, in response to developmental cues and stress conditions.
    Chen MX; Zhang KL; Gao B; Yang JF; Tian Y; Das D; Fan T; Dai L; Hao GF; Yang GF; Zhang J; Zhu FY; Fang YM
    Plant J; 2020 Jul; 103(1):357-378. PubMed ID: 32133712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.