BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19603774)

  • 1. Study of the mechanism of the N-CO photodissociation in N,N-dimethylformamide by direct trajectory surface hopping simulations.
    Eckert-Maksić M; Antol I
    J Phys Chem A; 2009 Nov; 113(45):12582-90. PubMed ID: 19603774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the photodeactivation of formamide in the nO-pi* and pi-pi* states: an ab initio on-the-fly surface-hopping dynamics study.
    Antol I; Eckert-Maksić M; Barbatti M; Lischka H
    J Chem Phys; 2007 Dec; 127(23):234303. PubMed ID: 18154378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodynamics simulations of thymine: relaxation into the first excited singlet state.
    Szymczak JJ; Barbatti M; Soo Hoo JT; Adkins JA; Windus TL; Nachtigallová D; Lischka H
    J Phys Chem A; 2009 Nov; 113(45):12686-93. PubMed ID: 19691341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophysics of the pi,pi* and n,pi* states of thymine: MS-CASPT2 minimum-energy paths and CASSCF on-the-fly dynamics.
    Asturiol D; Lasorne B; Robb MA; Blancafort L
    J Phys Chem A; 2009 Sep; 113(38):10211-8. PubMed ID: 19722485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential energy surface and unimolecular dynamics of stretched n-butane.
    Lourderaj U; McAfee JL; Hase WL
    J Chem Phys; 2008 Sep; 129(9):094701. PubMed ID: 19044880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study on the singlet excited state of pterin and its deactivation pathway.
    Chen X; Xu X; Cao Z
    J Phys Chem A; 2007 Sep; 111(38):9255-62. PubMed ID: 17629256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental studies on the mechanism of norbornadiene Pauson-Khand cycloadducts photorearrangement. Is there a pathway on the excited singlet potential energy surface?
    Olivella S; Solé A; Lledó A; Ji Y; Verdaguer X; Suau R; Riera A
    J Am Chem Soc; 2008 Dec; 130(50):16898-907. PubMed ID: 19053466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The photodissociation dynamics of N-nitrosopyrrolidine from the first and second excited singlet states studied by velocity map imaging.
    Wenge AM; Kensy U; Dick B
    Phys Chem Chem Phys; 2010 May; 12(18):4644-55. PubMed ID: 20428544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectory surface-hopping study of methane photodissociation dynamics.
    Lodriguito MD; Lendvay G; Schatz GC
    J Chem Phys; 2009 Dec; 131(22):224320. PubMed ID: 20001049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photodissociation mechanisms of acrylonitrile: Ab initio calculations on reaction channels and surface intersections.
    Du WN; Luo C; Li ZS
    J Chem Phys; 2008 Nov; 129(17):174309. PubMed ID: 19045349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site.
    Bertini L; Greco C; De Gioia L; Fantucci P
    J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited states of thiophene: ring opening as deactivation mechanism.
    Salzmann S; Kleinschmidt M; Tatchen J; Weinkauf R; Marian CM
    Phys Chem Chem Phys; 2008 Jan; 10(3):380-92. PubMed ID: 18174980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QM/MM non-adiabatic decay dynamics of formamide in polar and non-polar solvents.
    Antol I; Eckert-Maksić M; Vazdar M; Ruckenbauer M; Lischka H
    Phys Chem Chem Phys; 2012 Oct; 14(38):13262-72. PubMed ID: 22918485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the photochemical process of singlet oxygen production by phenalenone.
    Segado M; Reguero M
    Phys Chem Chem Phys; 2011 Mar; 13(9):4138-48. PubMed ID: 21225064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic trajectory studies of NaI(H2O)n photodissociation dynamics.
    Koch DM; Timerghazin QK; Peslherbe GH; Ladanyi BM; Hynes JT
    J Phys Chem A; 2006 Feb; 110(4):1438-54. PubMed ID: 16435804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical study of the photodissociation reaction of thiophenol at 243 nm: intramolecular orbital alignment of the phenylthiyl radical.
    Lim IS; Lim JS; Lee YS; Kim SK
    J Chem Phys; 2007 Jan; 126(3):034306. PubMed ID: 17249870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet photodissociation dynamics of 2-methyl, 3-furanthiol: tuning pi-conjugation in sulfur substituted heterocycles.
    Oliver TA; King GA; Nix MG; Ashfold MN
    J Phys Chem A; 2010 Jan; 114(3):1338-46. PubMed ID: 19705816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations.
    Chen S; Fang WH
    J Chem Phys; 2009 Aug; 131(5):054306. PubMed ID: 19673561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.