BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19603786)

  • 1. FRET enhancement in multilayer core-shell nanoparticles.
    Lessard-Viger M; Rioux M; Rainville L; Boudreau D
    Nano Lett; 2009 Aug; 9(8):3066-71. PubMed ID: 19603786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles.
    Lismont M; Páez CA; Dreesen L
    J Colloid Interface Sci; 2015 Jun; 447():40-9. PubMed ID: 25697687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement.
    Guo L; Guan A; Lin X; Zhang C; Chen G
    Talanta; 2010 Oct; 82(5):1696-700. PubMed ID: 20875565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-Fine Control of Silica Shell Thickness on Silver Nanoparticle-Assembled Structures.
    Hahm E; Jo A; Kang EJ; Bock S; Pham XH; Chang H; Jun BH
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects.
    Fuertes MC; Marchena M; Marchi MC; Wolosiuk A; Soler-Illia GJ
    Small; 2009 Feb; 5(2):272-80. PubMed ID: 19115355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of chemically synthesized FePt nanoparticles in water: core-shell silica/FePt nanocomposites.
    Salgueiriño-Maceira V; Correa-Duarte MA; Farle M
    Small; 2005 Nov; 1(11):1073-6. PubMed ID: 17193398
    [No Abstract]   [Full Text] [Related]  

  • 7. Preparation of Novel Europium Complex Doped Ag@SiO2 Nanoparticles with Intense Fluorescence.
    Liu B; Yin D; Song K; Yang JO; Wang C; Wu M
    J Nanosci Nanotechnol; 2015 Jan; 15(1):151-6. PubMed ID: 26328320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell nanoarchitectures: a strategy to improve the efficiency of luminescence resonance energy transfer.
    Song C; Ye Z; Wang G; Yuan J; Guan Y
    ACS Nano; 2010 Sep; 4(9):5389-97. PubMed ID: 20681528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast dynamics of excitons in semiconductor quantum dots on a plasmonically active nano-structured silver film.
    Batabyal S; Makhal A; Das K; Raychaudhuri AK; Pal SK
    Nanotechnology; 2011 May; 22(19):195704. PubMed ID: 21430325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.
    Lu L; Qian Y; Wang L; Ma K; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1944-50. PubMed ID: 24480015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced fluorescence from fluorophore-assembled monolayers by using Ag@SiO2 nanoparticles.
    Zhang R; Wang Z; Song C; Yang J; Li J; Sadaf A; Cui Y
    Chemphyschem; 2011 Apr; 12(5):992-8. PubMed ID: 21442706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dye-labeled silver nanoshell-bright particle.
    Zhang J; Gryczynski I; Gryczynski Z; Lakowicz JR
    J Phys Chem B; 2006 May; 110(18):8986-91. PubMed ID: 16671705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology.
    Gong JL; Jiang JH; Liang Y; Shen GL; Yu RQ
    J Colloid Interface Sci; 2006 Jun; 298(2):752-6. PubMed ID: 16457836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of silver nanostructures formed in situ in silica sol-gel derived films on the rate of Förster resonance energy transfer.
    Holmes-Smith AS; McDowell GR; Toury M; McLoskey D; Hungerford G
    Chemphyschem; 2012 Feb; 13(2):535-41. PubMed ID: 22213636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes.
    Yang M; Chen T; Lau WS; Wang Y; Tang Q; Yang Y; Chen H
    Small; 2009 Feb; 5(2):198-202. PubMed ID: 19040220
    [No Abstract]   [Full Text] [Related]  

  • 16. Förster resonance energy transfer-based biosensing platform with ultrasmall silver nanoclusters as energy acceptors.
    Xiao Y; Shu F; Wong KY; Liu Z
    Anal Chem; 2013 Sep; 85(18):8493-7. PubMed ID: 23981044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.
    Bai Z; Chen R; Si P; Huang Y; Sun H; Kim DH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5856-60. PubMed ID: 23716502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large enhancement of single molecule fluorescence by coupling to hollow silver nanoshells.
    Fu Y; Zhang J; Lakowicz JR
    Chem Commun (Camb); 2012 Oct; 48(78):9726-8. PubMed ID: 22914646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs.
    Aslan K; Wu M; Lakowicz JR; Geddes CD
    J Fluoresc; 2007 Mar; 17(2):127-31. PubMed ID: 17279332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a novel core-shell Ag-graphene@SiO2 nanocomposite for fluorescence enhancement.
    Yin D; Liu B; Zhang L; Wu M
    J Biomed Nanotechnol; 2012 Jun; 8(3):458-64. PubMed ID: 22764415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.