BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19603858)

  • 1. Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification.
    McCreery RW; Pittman A; Lewis J; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Jul; 126(1):15-24. PubMed ID: 19603858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test-retest reliability of probe-microphone verification in children fitted with open and closed hearing aid tips.
    Kim H; Ricketts TA
    J Am Acad Audiol; 2013; 24(7):635-42. PubMed ID: 24047950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.
    LaRae Recker K; Zhang T; Lin W
    J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of standing-wave errors in real-ear sound-level measurements.
    Richmond SA; Kopun JG; Neely ST; Tan H; Gorga MP
    J Acoust Soc Am; 2011 May; 129(5):3134-40. PubMed ID: 21568416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniature microphone probe tube measurements in the external auditory canal.
    Hellstrom PA; Axelsson A
    J Acoust Soc Am; 1993 Feb; 93(2):907-19. PubMed ID: 8445126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic acoustic considerations of ear canal probe measurements.
    Dirks DD; Kincaid GE
    Ear Hear; 1987 Oct; 8(5 Suppl):60S-67S. PubMed ID: 3678652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the Repeatability and Accuracy of the Wideband Real-Ear-to-Coupler Difference.
    Vaisberg JM; Folkeard P; Pumford J; Narten P; Scollie S
    J Am Acad Audiol; 2018 Jun; 29(6):520-532. PubMed ID: 29863466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of in-situ calibration methods for quantifying input to the middle ear.
    Lewis JD; McCreery RW; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Dec; 126(6):3114-24. PubMed ID: 20000925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of a miniature microphone in the ear canal for the verification of hearing aid performance.
    Harford ER
    Ear Hear; 1980; 1(6):329-37. PubMed ID: 7439566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of reference microphone placement on sound pressure levels at an ear level hearing aid microphone.
    Feigin JA; Barlow NL; Stelmachowicz PG
    Ear Hear; 1990 Oct; 11(5):321-6. PubMed ID: 2262080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits.
    Maxim T; Shera CA; Charaziak KK; Abdala C
    Ear Hear; 2019; 40(6):1345-1358. PubMed ID: 30882535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of occluded ear impedances on the eardrum SPL produced by hearing aids.
    Gilman S; Dirks DD; Stern R
    J Acoust Soc Am; 1981 Aug; 70(2):370-86. PubMed ID: 7288025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of probe tube insertion depth on spectral measures of speech.
    Caldwell M; Souza PE; Tremblay KL
    Trends Amplif; 2006 Sep; 10(3):145-54. PubMed ID: 16959735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of calibration method on distortion-product otoacoustic emission measurements: II. threshold prediction.
    Rogers AR; Burke SR; Kopun JG; Tan H; Neely ST; Gorga MP
    Ear Hear; 2010 Aug; 31(4):546-54. PubMed ID: 20458245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.