These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 19603874)

  • 1. Use of the standard rubber ball as an impact source with heavyweight concrete floors.
    Jeon JY; Lee PJ; Sato S
    J Acoust Soc Am; 2009 Jul; 126(1):167-78. PubMed ID: 19603874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subjective evaluation of heavy-weight floor impact sounds in relation to spatial characteristics.
    Jeon JY; Lee PJ; Kim JH; Yoo SY
    J Acoust Soc Am; 2009 May; 125(5):2987-94. PubMed ID: 19425642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force generation characteristics of standard heavyweight impact sources used in the sound generation of building floors.
    Park B; Jeon JY; Park J
    J Acoust Soc Am; 2010 Dec; 128(6):3507-12. PubMed ID: 21218883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temporal decay on perception of heavy-weight floor impact sounds.
    Kim JH; Ryu JK; Jeon JY
    J Acoust Soc Am; 2013 Oct; 134(4):2730-8. PubMed ID: 24116411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vibration characteristics on the walking discomfort of floating floors on concrete slabs.
    Kim JH; Jeon JY
    J Acoust Soc Am; 2014 Oct; 136(4):1702-11. PubMed ID: 25324073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between annoyance and single-number quantities for rating heavy-weight floor impact sound insulation in wooden houses.
    Ryu J; Sato H; Kurakata K; Hiramitsu A; Tanaka M; Hirota T
    J Acoust Soc Am; 2011 May; 129(5):3047-55. PubMed ID: 21568408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The responses of subjective feeling, task performance ability, cortisol and HRV for the various types of floor impact sound: a pilot study.
    Yun SH; Park SJ; Sim CS; Sung JH; Kim A; Lee JM; Lee SH; Lee J
    Ann Occup Environ Med; 2017; 29():13. PubMed ID: 28515946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the impact sound in golf putting.
    Barrass DF; Roberts JR; Jones R
    J Sports Sci; 2006 May; 24(5):443-54. PubMed ID: 16608759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Background Noise, Noise Sensitivity, and Attitudes towards Neighbours, and a Subjective Experiment Using a Rubber Ball Impact Sound.
    Jeong J
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34300019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound insulation dataset of 30 wooden and 8 concrete floors tested in laboratory conditions.
    Hongisto V; Alakoivu R; Virtanen J; Hakala J; Saarinen P; Laukka J; Linderholt A; Olsson J; Jarnerö K; Keränen J
    Data Brief; 2023 Aug; 49():109393. PubMed ID: 37492232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the static compressive load on vibration propagation in multistory buildings and resulting heavyweight floor impact sounds.
    Kwak Y; Lee S; Park J; Hwang D; Jeon JY; Park J
    J Acoust Soc Am; 2017 Jul; 142(1):308. PubMed ID: 28764414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized reference spectrum for rating the impact sound insulation of concrete floors.
    Kylliäinen M; Virjonen P; Hongisto V
    J Acoust Soc Am; 2019 Jan; 145(1):407. PubMed ID: 30710933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subjective and objective evaluations of a scattered sound field in a scale model opera house.
    Ryu JK; Jeon JY
    J Acoust Soc Am; 2008 Sep; 124(3):1538-49. PubMed ID: 19045645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic properties of floating floor system and its influence on heavy-weight impact sound in residential buildings.
    Kim JH; Park HG; Han HK; Mun DH
    J Acoust Soc Am; 2021 Aug; 150(2):1251. PubMed ID: 34470334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating standard airborne sound insulation measures in terms of annoyance, loudness, and audibility ratings.
    Park HK; Bradley JS
    J Acoust Soc Am; 2009 Jul; 126(1):208-19. PubMed ID: 19603878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin.
    Kim H; Park S; Lee S
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deflection of resilient materials for reduction of floor impact sound.
    Lee JY; Kim JM
    ScientificWorldJournal; 2014; 2014():612608. PubMed ID: 25574491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A psychophysical evaluation of near-field head-related transfer functions synthesized using a distance variation function.
    Kan A; Jin C; van Schaik A
    J Acoust Soc Am; 2009 Apr; 125(4):2233-42. PubMed ID: 19354399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the acoustic signature of golf ball impact.
    Shannon K; Axe JD
    J Sports Sci; 2002 Aug; 20(8):629-33. PubMed ID: 12190283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic Performance of Floors Made of Composite Panels.
    Nurzyński J; Nowotny Ł
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.