BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 19603979)

  • 1. Quantitative prediction of gas-phase 17O nuclear magnetic shielding constants.
    Auer AA
    J Chem Phys; 2009 Jul; 131(2):024116. PubMed ID: 19603979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative prediction of gas-phase (15)N and (31)P nuclear magnetic shielding constants.
    Prochnow E; Auer AA
    J Chem Phys; 2010 Feb; 132(6):064109. PubMed ID: 20151735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants.
    Harding ME; Lenhart M; Auer AA; Gauss J
    J Chem Phys; 2008 Jun; 128(24):244111. PubMed ID: 18601321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From CCSD(T)/aug-cc-pVTZ-J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations.
    Kupka T; Stachów M; Nieradka M; Kaminsky J; Pluta T; Sauer SP
    Magn Reson Chem; 2011 May; 49(5):231-6. PubMed ID: 21387405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and computational characterization of the 17O quadrupole coupling and magnetic shielding tensors for p-nitrobenzaldehyde and formaldehyde.
    Wu G; Mason P; Mo X; Terskikh V
    J Phys Chem A; 2008 Feb; 112(5):1024-32. PubMed ID: 18193848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new nonsymmetric as (OH)3 species. Comparison with the known C3 species and themochemistry at the HF, DFT(B3LYP), MP2, MP4, and CCSD(T) levels of theory.
    Ramírez-Solís A; Hernandez-Cobos J; Vargas C
    J Phys Chem A; 2006 Jun; 110(24):7637-41. PubMed ID: 16774208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of harmonic vibrational frequency scale factors.
    Merrick JP; Moran D; Radom L
    J Phys Chem A; 2007 Nov; 111(45):11683-700. PubMed ID: 17948971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The accuracy of rotational constants predicted by high-level quantum-chemical calculations. I. molecules containing first-row atoms.
    Puzzarini C; Heckert M; Gauss J
    J Chem Phys; 2008 May; 128(19):194108. PubMed ID: 18500857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations.
    Jurecka P; Cerný J; Hobza P; Salahub DR
    J Comput Chem; 2007 Jan; 28(2):555-69. PubMed ID: 17186489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate ab initio structure, dissociation energy, and vibrational spectroscopy of the F(-)-CH4 anion complex.
    Czakó G; Braams BJ; Bowman JM
    J Phys Chem A; 2008 Aug; 112(32):7466-72. PubMed ID: 18651724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and thermochemistry of calcium-containing molecules.
    Haworth NL; Sullivan MB; Wilson AK; Martin JM; Radom L
    J Phys Chem A; 2005 Oct; 109(40):9156-68. PubMed ID: 16332025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs.
    Jurecka P; Sponer J; Cerný J; Hobza P
    Phys Chem Chem Phys; 2006 May; 8(17):1985-93. PubMed ID: 16633685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anharmonic zero point vibrational energies: tipping the scales in accurate thermochemistry calculations?
    Pfeiffer F; Rauhut G; Feller D; Peterson KA
    J Chem Phys; 2013 Jan; 138(4):044311. PubMed ID: 23387588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to compute isomerization energies of organic molecules with quantum chemical methods.
    Grimme S; Steinmetz M; Korth M
    J Org Chem; 2007 Mar; 72(6):2118-26. PubMed ID: 17286442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic studies on the computation of nuclear magnetic resonance shielding constants and chemical shifts: the density functional models.
    Wu A; Zhang Y; Xu X; Yan Y
    J Comput Chem; 2007 Nov; 28(15):2431-42. PubMed ID: 17722026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian basis set of double zeta quality for atoms K through Kr: application in DFT calculations of molecular properties.
    Camiletti GG; Machado SF; Jorge FE
    J Comput Chem; 2008 Nov; 29(14):2434-44. PubMed ID: 18612996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-consistent versus correlation-consistent basis sets in predicting molecular and spectroscopic properties.
    Kupka T; Lim C
    J Phys Chem A; 2007 Mar; 111(10):1927-32. PubMed ID: 17309238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory.
    Ligabue A; Sauer SP; Lazzeretti P
    J Chem Phys; 2007 Apr; 126(15):154111. PubMed ID: 17461618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.