These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 19603979)

  • 21. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations.
    Kupka T; Stachów M; Kaminsky J; Sauer SP
    Magn Reson Chem; 2013 Aug; 51(8):482-9. PubMed ID: 23749459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal effects and vibrational corrections to transition metal NMR chemical shifts.
    Grigoleit S; Bühl M
    Chemistry; 2004 Oct; 10(21):5541-52. PubMed ID: 15457510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational study of noncovalent complexes between formamide and formic acid.
    Sánchez-García E; Montero LA; Sander W
    J Phys Chem A; 2006 Nov; 110(46):12613-22. PubMed ID: 17107112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards the accurate calculation of 183W NMR chemical shifts in polyoxometalates: the relevance of the structure.
    Vilà-Nadal L; Sarasa JP; Rodríguez-Fortea A; Igual J; Kazansky LP; Poblet JM
    Chem Asian J; 2010 Jan; 5(1):97-104. PubMed ID: 19967735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CCSD(T) complete basis set limit relative energies for low-lying water hexamer structures.
    Bates DM; Tschumper GS
    J Phys Chem A; 2009 Apr; 113(15):3555-9. PubMed ID: 19354314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geometric dependence of the B3LYP-predicted magnetic shieldings and chemical shifts.
    Zhang Y; Wu A; Xu X; Yan Y
    J Phys Chem A; 2007 Sep; 111(38):9431-7. PubMed ID: 17696331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of quantum chemical models for calculating NMR shielding parameters in peptides: mixed basis set and ONIOM methods combined with a complete basis set extrapolation.
    Moon S; Case DA
    J Comput Chem; 2006 May; 27(7):825-36. PubMed ID: 16541428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermochemistry of the HOSO radical, a key intermediate in fossil fuel combustion.
    Wheeler SE; Schaefer HF
    J Phys Chem A; 2009 Jun; 113(24):6779-88. PubMed ID: 19459665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thinking out of the black box: accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene.
    Wheeler SE; Ess DH; Houk KN
    J Phys Chem A; 2008 Feb; 112(8):1798-807. PubMed ID: 18247512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations.
    Sklenak S; Dedecek J; Li C; Wichterlová B; Gábová V; Sierka M; Sauer J
    Phys Chem Chem Phys; 2009 Feb; 11(8):1237-47. PubMed ID: 19209368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The equilibrium structure of ferrocene.
    Coriani S; Haaland A; Helgaker T; Jørgensen P
    Chemphyschem; 2006 Jan; 7(1):245-9. PubMed ID: 16404766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.
    Dracínský M; Kaminský J; Bour P
    J Chem Phys; 2009 Mar; 130(9):094106. PubMed ID: 19275395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical investigation on 1H and 13C NMR chemical shifts of small alkanes and chloroalkanes.
    d'Antuono P; Botek E; Champagne B; Spassova M; Denkova P
    J Chem Phys; 2006 Oct; 125(14):144309. PubMed ID: 17042592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simplified CCSD(T)-F12 methods: theory and benchmarks.
    Knizia G; Adler TB; Werner HJ
    J Chem Phys; 2009 Feb; 130(5):054104. PubMed ID: 19206955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model identity SN2 reactions CH3X + X- (X = F, Cl, CN, OH, SH, NH2, PH2): Marcus theory analyzed.
    Gonzales JM; Allen WD; Schaefer HF
    J Phys Chem A; 2005 Nov; 109(46):10613-28. PubMed ID: 16834318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semispectroscopic and quantitative structure-property relationship estimates of the equilibrium and vibrationally averaged structure and dipole moment of 1-buten-3-yne.
    Tasi G; Szöri M; Csaszar AG
    J Phys Chem A; 2005 Jun; 109(21):4824-8. PubMed ID: 16833826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational modeling of polyoxotungstates by relativistic DFT calculations of (183)W NMR chemical shifts.
    Bagno A; Bonchio M; Autschbach J
    Chemistry; 2006 Nov; 12(33):8460-71. PubMed ID: 16927351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Why benchmark-quality computations are needed to reproduce 1-adamantyl cation NMR chemical shifts accurately.
    Harding ME; Gauss J; Schleyer Pv
    J Phys Chem A; 2011 Mar; 115(11):2340-4. PubMed ID: 21361308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.