These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 19603982)

  • 21. Mixed quantum-classical description of spectroscopy of dissipative systems.
    Toutounji M
    J Chem Phys; 2006 Nov; 125(19):194520. PubMed ID: 17129136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonadiabatic mixed quantum-classical dynamic simulation of pi-stacked oligophenylenevinylenes.
    Sterpone F; Bedard-Hearn MJ; Rossky PJ
    J Phys Chem A; 2009 Apr; 113(15):3427-30. PubMed ID: 19317436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical evaluation of approximate quantum decoherence rates for an electronic transition in methanol solution.
    Turi L; Rossky PJ
    J Chem Phys; 2004 Feb; 120(8):3688-98. PubMed ID: 15268531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime.
    Kwac K; Geva E
    J Phys Chem B; 2012 Mar; 116(9):2856-66. PubMed ID: 22283660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray absorption and resonant Auger spectroscopy of O2 in the vicinity of the O 1s-->sigma* resonance: experiment and theory.
    Feifel R; Velkov Y; Carravetta V; Angeli C; Cimiraglia R; Sałek P; Gel'mukhanov F; Sorensen SL; Piancaśtelli MN; De Fanis A; Okada K; Kitajima M; Tanaka T; Tanaka H; Ueda K
    J Chem Phys; 2008 Feb; 128(6):064304. PubMed ID: 18282035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.
    Larsen RE; Bedard-Hearn MJ; Schwartz BJ
    J Phys Chem B; 2006 Oct; 110(40):20055-66. PubMed ID: 17020394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harmonic theory of thermal two-photon absorption in benzene.
    Zhang ML; Pollak E
    J Phys Chem A; 2005 Jan; 109(1):122-32. PubMed ID: 16839096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics.
    Mahapatra S
    Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 1H multiple-quantum nuclear magnetic resonance investigations of molecular order in polymer networks. II. Intensity decay and restricted slow dynamics.
    Saalwächter K
    J Chem Phys; 2004 Jan; 120(1):454-64. PubMed ID: 15267307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 2. A prediction for the observation of hydrated dielectrons with pump-probe spectroscopy.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9692-7. PubMed ID: 16686520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explicit dynamical electron-proton correlation in the nuclear-electronic orbital framework.
    Swalina C; Pak MV; Chakraborty A; Hammes-Schiffer S
    J Phys Chem A; 2006 Aug; 110(33):9983-7. PubMed ID: 16913669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron-nuclear correlations for photo-induced dynamics in molecular dimers.
    Kilin DS; Pereversev YV; Prezhdo OV
    J Chem Phys; 2004 Jun; 120(23):11209-23. PubMed ID: 15268151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inclusion of explicit electron-proton correlation in the nuclear-electronic orbital approach using Gaussian-type geminal functions.
    Chakraborty A; Pak MV; Hammes-Schiffer S
    J Chem Phys; 2008 Jul; 129(1):014101. PubMed ID: 18624464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum effect of intramolecular high-frequency vibrational modes on diffusion-controlled electron transfer rate: from the weak to the strong electronic coupling regions.
    Zhu W; Zhao Y
    J Chem Phys; 2007 May; 126(18):184105. PubMed ID: 17508790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An adiabatic linearized path integral approach for quantum time correlation functions: electronic transport in metal-molten salt solutions.
    Causo MS; Ciccotti G; Montemayor D; Bonella S; Coker DF
    J Phys Chem B; 2005 Apr; 109(14):6855-65. PubMed ID: 16851772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of approximate quantum simulation methods applied to normal liquid helium at 4 K.
    Hone TD; Poulsen JA; Rossky PJ; Manolopoulos DE
    J Phys Chem B; 2008 Jan; 112(2):294-300. PubMed ID: 18027920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum-classical dynamics of wave fields.
    Sergi A
    J Chem Phys; 2007 Feb; 126(7):074109. PubMed ID: 17328595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonadiabatic quantum-classical reaction rates with quantum equilibrium structure.
    Kim H; Kapral R
    J Chem Phys; 2005 Nov; 123(19):194108. PubMed ID: 16321077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear quantum time correlation functions from centroid molecular dynamics and the maximum entropy method.
    Paesani F; Voth GA
    J Chem Phys; 2008 Nov; 129(19):194113. PubMed ID: 19026051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semiclassical description of electronically nonadiabatic dynamics via the initial value representation.
    Ananth N; Venkataraman C; Miller WH
    J Chem Phys; 2007 Aug; 127(8):084114. PubMed ID: 17764236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.