These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19604515)

  • 1. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method.
    Chan ES; Lee BB; Ravindra P; Poncelet D
    J Colloid Interface Sci; 2009 Oct; 338(1):63-72. PubMed ID: 19604515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical exponents and self-similarity for sol-gel transition in aqueous alginate systems induced by in situ release of calcium cations.
    Lu L; Liu X; Tong Z; Gao Q
    J Phys Chem B; 2006 Dec; 110(49):25013-20. PubMed ID: 17149924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of production of dextransucrase and dextran by cells of Leuconostoc mesenteroides immobilized on Celite and in calcium alginate beads.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Jun; 36(1):83-91. PubMed ID: 18592612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation into size and sphericity of alginate micro-beads produced by electrospraying technique: Operational condition optimization.
    Partovinia A; Vatankhah E
    Carbohydr Polym; 2019 Apr; 209():389-399. PubMed ID: 30732823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen diffusivity in gel beads containing viable cells.
    Kurosawa H; Matsumura M; Tanaka H
    Biotechnol Bioeng; 1989 Oct; 34(7):926-32. PubMed ID: 18588184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods.
    Puguan JM; Yu X; Kim H
    J Colloid Interface Sci; 2014 Oct; 432():109-16. PubMed ID: 25086384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile preparation of spherically and mechanically controllable liquid-core-shell alginate-based bead through interfacial gelation.
    Liu H; Liu F; Ma Y; Goff HD; Zhong F
    Carbohydr Polym; 2020 May; 236():115980. PubMed ID: 32172829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Process Conditions and Colloidal Properties of Cellulose Nanocrystals Suspensions on the Production of Hydrogel Beads.
    Ferrari N; Maestri CA; Bettotti P; Grassi M; Abrami M; Scarpa M
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and maintenance of tubular membrane projections: experiments and numerical calculations.
    Umeda T; Inaba T; Ishijima A; Takiguchi K; Hotani H
    Biosystems; 2008; 93(1-2):115-9. PubMed ID: 18457911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads.
    Martinsen A; Skjåk-Braek G; Smidsrød O
    Biotechnol Bioeng; 1989 Jan; 33(1):79-89. PubMed ID: 18587846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads.
    Zazzali I; Aguirre Calvo TR; Pizones Ruíz-Henestrosa VM; Santagapita PR; Perullini M
    Carbohydr Polym; 2019 Feb; 206():749-756. PubMed ID: 30553381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields.
    Petousis I; Homburg E; Derks R; Dietzel A
    Lab Chip; 2007 Dec; 7(12):1746-51. PubMed ID: 18030396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel technique for measuring solute diffusivities in entrapment matrices used in immobilization.
    Merchant FJ; Margaritis A; Wallace JB; Vardanis A
    Biotechnol Bioeng; 1987 Dec; 30(8):936-45. PubMed ID: 18581532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When sessile drops are no longer small: transitions from spherical to fully flattened.
    Extrand CW; Moon SI
    Langmuir; 2010 Jul; 26(14):11815-22. PubMed ID: 20553001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotating-liquid-based hydrogel bead generator.
    Zhang H; Ryu S
    HardwareX; 2020 Oct; 8():e00121. PubMed ID: 35498249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Ca-alginate as a novel support for TiO2 immobilization in methylene blue decolorisation.
    Albarelli JQ; Santos DT; Murphy S; Oelgemöller M
    Water Sci Technol; 2009; 60(4):1081-7. PubMed ID: 19700848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermocapillary motion of a liquid drop on a horizontal solid surface.
    Pratap V; Moumen N; Subramanian RS
    Langmuir; 2008 May; 24(9):5185-93. PubMed ID: 18399689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle.
    Mark D; Haeberle S; Zengerle R; Ducree J; Vladisavljević GT
    J Colloid Interface Sci; 2009 Aug; 336(2):634-41. PubMed ID: 19428020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real and pseudo oxygen gradients in Ca-alginate beads monitored during polarographic Po2-measurements using Pt-needle microelectrodes.
    Müller W; Winnefeld A; Kohls O; Scheper T; Zimelka W; Baumgärtl H
    Biotechnol Bioeng; 1994 Aug; 44(5):617-25. PubMed ID: 18618797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.